Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Design and Development of the 2003 University of Alberta Hybrid Electric Vehicle

2003-03-03
2003-01-1268
The 2003 University of Alberta FutureTruck team is converting a 2002 Ford Explorer to be a pre-transmission, parallel Hybrid Electric Vehicle (HEV). The goals for the FutureTruck competition are to achieve increased fuel economy, while reducing emissions and maintaining the functionality of the stock SUV. The University of Alberta design places a 2.0L Zetec engine, running on E85, in parallel with a Unique Mobility brushless DC motor. In the Explorer the engine and motor will have peak power outputs of 110 kW and 60 kW. The motor will draw electricity from a nominal 200V lithium ion battery pack that is in parallel with ultracapacitor banks. Further modifications integrate this drive train into the vehicle and use control logic to provide a seamless, customer friendly package.
Technical Paper

Quantifying Vehicle Emission Factors for Various Ambient Conditions using an On-Road, Real-Time Emissions System

2003-03-03
2003-01-0301
This paper demonstrates vehicle emission factor measurement using an on-board, on-road system and examines the effects of ambient temperature on those emission factors. Vehicle operating parameters, fuel consumption and emissions were measured on-road using a portable measurement system designed for ease of use with a range of vehicles, drivers and driving situations. The results reported here come from repeated trips over a 17.4 km urban / suburban route with a particular driver and vehicle. As such, the emission factors developed here do not represent the current on-road fleet. However, they show the strong influence of actual operating conditions (particularly ambient temperature) and of the vehicle control system's response to non-standard conditions. This leads to an appreciation for on-road testing as a means to illustrate vehicle emission behavior in real conditions and to highlight conditions which may require more detailed study.
Technical Paper

Real-Time, On-Road Measurement of Driving Behavior, Engine Parameters and Exhaust Emissions

2002-05-06
2002-01-1714
Automotive tailpipe emissions are a significant contribution to urban air quality problems.(1) However, it is difficult to quantify the extent of that contribution and to quantify any progress in solving the problem. Emissions inventories are commonly based on vehicle registrations, assumed mileage and a set of emission factors. The emission factors are based on dynamometer testing of selected vehicles undertightly controlled conditions. Actual vehicle operation in any urban area encompasses a wider range of vehicles, operating conditions and ambient conditions. Given the highly tuned nature of current engine management systems, the actual in-use emissions levels can be highly sensitive to non-standard ambient and operating situations.(2,3,4,5) This paper describes an on-board system used to record ambient conditions, driving behavior, vehicle operating parameters, fuel consumption and exhaust emissions.
Technical Paper

Development of the University of Alberta Entry in the 1993 HEV Challenge

1994-03-01
940339
Because of the limitations of their storage batteries, electric cars have always suffered from short range, high weight, and high cost. New battery technologies will provide a significant improvement but all-electric vehicles will still tend to be heavy, costly, and severely limited in range compared with their combustion-engined counterparts. Despite these inherent disadvantages, there is a huge impetus for electric car development because of the pollution disadvantages of the combustion engine. Given the weight/cost/range problems of purely electric cars, it is desirable to develop hybrid cars which have the capability of operating as zero-emission electric cars in urban areas and which use a small internal combustion engine to extend the operating range. The internal combustion engine and its fuel are far lighter, cheaper, and more effective at extending range than carrying enough battery capacity to give an all-electric vehicle a suitable range. The U.S.
Technical Paper

Sub-Zero Cold Starting of a Port-Injected M100 Engine Using Plasma Jet Ignition and Prompt EGR

1993-03-01
930331
This study describes the design and proof-of-concept testing of a system which has enabled sub-zero cold starting of a port-injected V6 engine fuelled with M100. At -30°C, the engine could reach running speed about 5s after the beginning of cranking. At a given temperature, starts were achieved using a fraction of the mixture enrichment normally required for the more volatile M85 fuels. During cold start cranking, firing is achieved using a high energy plasma jet ignition system. The achievement of stable idling following first fire is made possible through the use of an Exhaust Charged Cycle (ECC) camshaft design. The ECC camshaft promptly recirculates hot exhaust products, unburnt methanol and partial combustion products back into the cylinder to enhance combustion. The combined plasma jet/ECC system demonstrated exceptionally good combustion stability during fast idle following sub-zero cold starts.
X