Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Symmetric Negative Valve Overlap Effects on Energy Distribution of a Single Cylinder HCCI Engine

2018-04-03
2018-01-1250
The effects of Variable Valve Timing (VVT) on Homogeneous Charge Compression Ignition (HCCI) engine energy distribution and waste heat recovery are investigated using a fully flexible Electromagnetic Variable Valve Timing (EVVT) system. The experiment is carried out in a single cylinder, 657 cc, port fuel injection engine fueled with n-heptane. Exergy analysis is performed to understand the relative contribution of different loss mechanisms in HCCI engines and how VVT changes these contributions. It is found that HCCI engine brake thermal efficiency, the Combined Heat and Power (CHP) power to heat ratio, the first and the second law efficiencies are improved with proper valve timing. Further analysis is performed by applying the first and second law of thermodynamics to compare HCCI energy and exergy distribution to Spark Ignition (SI) combustion using Primary Reference Fuel (PRF). HCCI demonstrates higher fuel efficiency and power to heat and energy loss ratios compared to SI.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

Insights into Deposit Formation in High Pressure Diesel Fuel Injection Equipment

2010-10-25
2010-01-2243
The need to meet the US 2007 emissions legislation has necessitated a change in Diesel engine technology, particularly to the fuel injection equipment (FIE). At the same time as these engine technology changes, legislation has dictated a reduction in fuel sulphur levels and there has also been increased use of fatty acid methyl esters (FAME) or biodiesel as a fuel blending component. The combination of changes to the engine and the fuel has apparently led to a sharp rise in the number of reports of field problems resulting from deposits within the FIE. The problem is usually manifested as a significant loss of power or the engine failing to start. These symptoms are often due to deposits to be found within the fuel injectors or to severe fouling of the fuel filter. The characteristics of the deposits found within different parts of the fuel system can be noticeably different.
Technical Paper

Extending the Load Range of a Natural Gas HCCI Engine using Direct Injected Pilot Charge and External EGR

2009-06-15
2009-01-1884
Natural gas is a challenging fuel for HCCI engines because its single-stage ignition and rapid combustion make it difficult to optimize combustion timing over a significant load range. This study investigates direct injection of a pilot quantity of high-cetane fuel near TDC as a range extension and combustion control mechanism for natural gas HCCI engines. The EGR and load range is studied in a supercharged natural gas HCCI engine equipped with external EGR, intake heating and a direct injection system for n-heptane pilot fuel. The operating range and emissions are of primary interest and are compared between both the baseline HCCI engine with variable intake temperature and the direct injected HCCI (DI-HCCI) engine with constant intake temperature. Test results show the EGR and load range at fixed intake temperature can be extended using pilot direct injection.
Journal Article

Dynamic Modeling of HCCI Combustion Timing in Transient Fueling Operation

2009-04-20
2009-01-1136
A physics-based control-oriented model is developed to dynamically predict cycle-to-cycle combustion timing in transient fueling conditions for Homogeneous Charge Compression Ignition (HCCI) engines. The model simulates the engine cycle from the intake stroke to the exhaust stroke and includes the thermal coupling dynamics caused by the residual gases from one cycle to the next cycle. A residual gas model, a modified knock integral model, a fuel burn rate model, and thermodynamic models for the gas state in combustion and exhaust strokes are incorporated to simulate the engine cycle. The gas exchange process, generated work and completeness of combustion are predicted using semi-empirical correlations. The resulting model is parameterized for the combustion of Primary Reference Fuel (PRF) blends using 5703 simulations from a detailed thermo-kinetic model. Semi-empirical correlations in the model are parameterized using the experimental data obtained from a single-cylinder engine.
Journal Article

Selection of Welding Parameter during Friction Stir Spot Welding

2008-04-14
2008-01-0146
The selection of parameters during friction stir spot welding of Al-alloys and Mg-alloys is discussed. The role of tool rotation speed, plunge rate, and dwell time is examined in relation to the tool heating rate,temperature, force, and torque that occur during spot welding. In order to reduce the cycle time and tool force during Al- alloy spot welding, it is necessary to increase the tool rotation speed >1500 RPM. The measured peak temperature in the stir zone is determined by the rotation speed and dwell time, and is ultimately limited by the solidus of the alloy. When tool rotation speeds >1500 RPM are employed during AZ91 Mg-alloy spot welding, the tendency for melted film formation and cracking are greatly increased.
Technical Paper

Reformer Gas Composition Effect on HCCI Combustion of n-Heptane, iso-Octane, and Natural Gas

2008-04-14
2008-01-0049
Although HCCI engines promise low NOx emissions with high efficiency, they suffer from a narrow operating range between knock and misfire because they lack a direct means of controlling combustion timing. A series of previous studies showed that reformer gas, (RG, defined as a mixture of light gases dominated by hydrogen and carbon monoxide), can be used to control combustion timing without changing mixture dilution, (λ or EGR) which control engine load. The effect of RG blending on combustion timing was found to be mainly related to the difference in auto-ignition characteristics between the RG and base fuel. The practical effectiveness of RG depends on local production using a fuel processor that consumes the same base fuel as the engine and efficiently produces high-hydrogen RG as a blending additive.
Technical Paper

Modeling and Simulation of Mg AZ80 Alloy Forging Behaviour

2008-04-14
2008-01-0214
Magnesium AZ80 is a medium strength alloy with good corrosion resistance and very good forging capability which offers an affordable commercial alternative to the Mg ZK60 alloy used for wheels in racing cars. Extending the market of Mg AZ80 alloy to automotive wheels requires a better understanding of macro- and micro-properties of this structural material, especially its forging behaviour. In this study the deformation behaviour of Mg AZ80 alloy is characterized by uniaxial compression tests from ambient to 420°C at a variety of strain rates using a Gleeble 1500 simulator. A constitutive relationship coupling materials work hardening and strain rate and temperature dependences is calibrated based on test results. This flow behaviour is input into a finite element model to simulate the forging operation of an automotive wheel with ABAQUS codes.
Technical Paper

Effect of Reformer Gas on HCCI Combustion - Part I:High Octane Fuels

2007-04-16
2007-01-0208
Homogeneous Charge Compression Ignition (HCCI) engines offer high fuel efficiency and some emissions benefits. However, it is difficult to control and stabilize combustion over a sufficient operating range because the critical compression ratio and intake temperature at which HCCI combustion can be achieved varies with operating conditions such as speed and load as well as with fuel octane number. Replacing part of the base fuel with reformer gas, (which can be produced from the base hydrocarbon fuel), alters HCCI combustion characteristics in varying ways depending on the replacement fraction and the base fuel auto-ignition characteristics. Injecting a blend of reformer gas and base fuel offers a potential HCCI combustion control mechanism because fuel injection quantities and ratios can be altered on a cycle-by-cycle basis.
Technical Paper

Effect of Reformer Gas on HCCI Combustion - Part II: Low Octane Fuels

2007-04-16
2007-01-0206
Homogeneous Charge Compression Ignition (HCCI) combustion offers high fuel efficiency and some emissions benefits. However, it is difficult to control and stabilize combustion over a significant operating range because the critical compression ratio and intake temperature at which HCCI combustion can be achieved vary with operating conditions such as speed and load as well as with fuel octane number. Replacing part of the base fuel with reformer gas, (which can be produced from the base hydrocarbon fuel), alters HCCI combustion characteristics in varying ways depending on the replacement fraction and the base fuel auto-ignition characteristics. Because fuel injection quantities and ratios can be altered on a cycle-by-cycle basis during operation, injecting a variable blend of reformer gas and base fuel offers a potential HCCI combustion control mechanism.
Technical Paper

Investigating Changes to the Downforce Curve of a Double Element Airfoil in Ground Effect

2004-11-30
2004-01-3558
As part of on-going research into ground effect aerodynamics at the University of Southampton, attempts have been made to shed light on variables that may influence the characteristic shape of a typical multi element airfoil downforce curve while varying ride height. To achieve the stated goal, a commercial CFD software package was used to perform a comparative aerodynamic analysis study. The height of a double element airfoil above the ground was varied, while the values of lift and drag obtained were recorded to provide baseline information. The angle of attack of the flap and the main element were then changed in order to discern any effects on the lift curve. Also investigated was the effect that the relative sizes of the main element and flap had on the lift and drag curves, since modern racing car wings vary in this manner across their span.
Technical Paper

Development of High Speed Spectroscopic Imaging Techniques for the Time Resolved Study of Spark Ignition Phenomena

2000-10-16
2000-01-2833
This paper reports on the development of novel time resolved spectroscopic imaging techniques for the study of spark ignition phenomena in combustion cells and an SI-engine. The techniques are based on planar laser induced fluorescence imaging (PLIF) of OH radicals, on fuel tracer PLIF, and on chemiluminescence. The techniques could be achieved at repetition rates reaching several hundreds of kilo-Hz and were cycle resolved. These techniques offer a new path along which engine related diagnostics can be undertaken, providing a wealth of information on turbulent spark ignition.
Technical Paper

The Effects of Turbulence of Spark-Ignited, Ultra Lean, Premixed Methane-Air Flame Growth in a Combustion Chamber

1995-10-01
952410
The effects of turbulence on 60% stoichiometric, premixed methane-air flame propagation were investigated using high speed schlieren video and pressure trace analyses. The mixtures were centrally spark-ignited at 300 K and 101 kPa in a 125 mm cubical chamber. Turbulence was up to 2 m/s intensity with 2 to 8 mm integral scale. With quiescent mixtures, buoyancy convected the slow-burning flame upward onto the upper wall, resulting in dramatic heat loss. With turbulence, the burning rate was enhanced profoundly, though partial flame quenching resulted in cyclic variability at higher turbulence levels. Despite this partial quenching, these ultra-lean flames generally resisted total extinguishment over the conditions tested.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

1995-10-01
952409
The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Technical Paper

Turbulence Effects on Developing Turbulent Flames in a Constant Volume Combustion Chamber

1993-03-01
930867
High speed Schlieren video and pressure trace analyses were used to study the turbulence effects on burning velocities in a constant volume combustion chamber. Propane-air and methane-air mixtures of equivalence ratios between 0.75 and 0.96 were ignited at 101 kPa and 296 K. Schlieren images of flame growth were recorded on video at 2000 frames per second while combustion chamber pressure was simultaneously recorded. Turbulence at ignition was up to 7 m/s intensity with 2 mm or 8 mm integral scale, produced by pulling a perforated plate across the chamber prior to ignition. In the analysis, the turbulence parameters during combustion were adjusted for the effect of decay and rapid distortion in a closed chamber. Results of both video and pressure trace analyses show a linear relationship between turbulent burning velocity and turbulence intensity as expected.
Technical Paper

Measuring Turbulent Flame Growth by Visualization

1992-02-01
920184
High speed schlieren video and pressure trace analyses were used to study the effects of turbulence on burning velocity in a fixed volume combustion chamber. Lean methane-air mixtures of equivalence ratios of 0.76 and 0.96 were ignited at 1 atm and 23°C. Schlieren images of flame growth were recorded on video at 2000 frames per second while combustion chamber pressure was simultaneously recorded. The turbulence intensity at ignition was set at 0 m/s to 4 m/s intensity with integral scale around 7.6 mm by pulling a perforated plate across the chamber prior to ignition. In the analysis, the turbulence parameters were adjusted for the effect of decay and rapid distortion in a closed vessel during combustion. Results of both video and pressure trace analyses show a linear relationship between turbulent burning velocity and turbulence intensity as expected. Moderate changes in equivalence ratio had a negligible effect on this relationship.
X