Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Improving Ethanol-Diesel Blend Through the Use of Hydroxylated Biodiesel

2014-10-13
2014-01-2776
Due to the emission benefits of the oxygen in the fuel molecule, the interest for the use of ethanol as fuel blend components in compression ignition engines has been increased. However the use of fuel blends with high percentage of ethanol can lead to poor fuel blend quality (e.g. fuel miscibility, cetane number, viscosity and lubricity). An approach which can be used to improve these properties is the addition of biodiesel forming ternary blends (ethanol-biodiesel-diesel). The addition of castor oil-derived biodiesel (COME) containing a high proportion of methyl ricinoleate (C18:1 OH) is an attractive approach in order to i) reduce the use of first generation biodiesel derived from edible sources, ii) balance the reduction in viscosity and lubricity of ethanol-diesel blends due to the high viscosity and excellent lubricity of methyl ricinoleate.
Journal Article

Interrogating the surface: the effect of blended diesel fuels on lubricity

2011-08-30
2011-01-1940
The lubricating properties of two sustainable alternative diesels blended with ultra low sulphur diesel (ULSD) were investigated. The candidate fuels were a biodiesel consisting of fatty acid methyl esters derived from rapeseed (RME) and gas-to-liquid (GTL). Lubricity tests were conducted on a high frequency reciprocating rig (HFRR). The mating specimen surfaces were analysed using optical microscopy and profilometery for wear scar diameters and profiles respectively. Microscopic surface topography and deposit composition was evaluated using a scanning electronic microscope (SEM) with an energy dispersive spectrometer (EDS). Like all modern zero sulphur diesel fuel (ZSD), GTL fuels need a lubricity agent to meet modern lubricity specifications. It has been proven that GTL responds well to typical lubricity additives in the marketplace.
X