Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Impact of Cold Ambient Conditions on Cold Start and Idle Emissions from Diesel Engines

2014-10-13
2014-01-2715
The cold start performance of a diesel engine has been receiving more attention as the European Commission emission regulations directed to include cold start emissions in the legislative emission driving cycles. The cold start performance of diesel engines is influenced by the ambient temperature conditions, engine design, fuel, lubricant and engine operating conditions. The present research work investigates the effect of cold ambient conditions on the diesel engine's performance and the exhaust emission (gaseous and particulate emissions) characteristics during the cold start and followed by idle. The engine startability and idling tests were carried out on the latest generation of diesel engine in a cold cell at various ambient temperatures ranging between +20°C and −20°C. Higher fuel consumption and peak speed were observed at very cold ambient compared to those at normal ambient during the cold start.
Journal Article

The Effect of Exhaust Throttling on HCCI - Alternative Way to Control EGR and In-Cylinder Flow

2008-06-23
2008-01-1739
Homogeneous Charge Compression Ignition (HCCI) has emerged as a promising technology for reduction of exhaust emissions and improvement of fuel economy of internal combustion engines. There are generally two proposed methods of realizing the HCCI operation. The first is through the control of gas temperature in the cylinder and the second is through the control of chemical reactivity of the fuel and air mixture. EGR trapping, i.e., recycling a large quantity of hot burned gases by using special valve-train events (e.g. negative valve overlap), seems to be practical for many engine configurations and can be combined with any of the other HCCI enabling technologies. While this method has been widely researched, it is understood that the operating window of the HCCI engine with negative valve overlap is constrained, and the upper and lower load boundaries are greatly affected by the in-cylinder temperature.
Technical Paper

Particulate Emissions from a Gasoline Homogeneous Charge Compression Ignition Engine

2007-04-16
2007-01-0209
Particulate Emissions from Homogeneous Charge Compression Ignition (HCCI) combustion are routinely assumed to be negligible. It is shown here that this is not the case when HCCI combustion is implemented in a direct injection gasoline engine. The conditions needed to sustain HCCI operation were realized using the negative valve overlap method for trapping high levels of residual exhaust gases in the cylinder. Measurements of emitted particle number concentration and electrical mobility diameter were made with a Cambustion DMS500 over the HCCI operating range possible with this hardware. Emissions of oxides of nitrogen, carbon monoxide and unburned hydrocarbons were also measured. These data are presented and compared with similar measurements made under conventional spark ignition (SI) operation in the same engine. Under both SI and HCCI operation, a significant accumulation mode was detected with particle equivalent diameters between 80 and 100 nm.
X