Refine Your Search

Topic

Author

Search Results

Technical Paper

Life-cycle Analysis of Methanol Production from Coke Oven Gas in China

2023-10-31
2023-01-1646
The growing demand for transportation fuels and the global emphasis on reducing greenhouse gas (GHG) emissions have led to increased interest in analyzing transport GHG emissions from the life-cycle perspective. Methanol, a potentially carbon-neutral fuel synthesized from CO2 and H2, has emerged as a promising candidate. This paper conducts a comprehensive life-cycle analysis (LCA) of the GHG emissions associated with the methanol production process, utilizing data inventory from China in 2019. To simulate the synthesis and distillation process of methanol, Aspen Plus is employed, using parameters obtained from actual plants. GHG emissions are then calculated using the GREET model, incorporating updated industry statistics and research findings. The CO2 necessary for methanol production is captured from factory flue gas.
Technical Paper

Effects of Ethanol-Blended Fuel on Combustion Characteristics, Gaseous and Particulate Emissions in Gasoline Direct Injection (GDI) Engines

2021-09-22
2021-26-0356
Ethanol fuel blends with gasoline for spark ignition (SI) internal combustion engines are widely used on account of their advantages in terms of fuel economy and emissions reduction potential. The focus of this paper is to study the effects of these blends on combustion characteristics such as in-cylinder pressure profiles, gas-phase emissions (e.g., unburned hydrocarbons, NOx) and particulates (e.g., particulate matter and particle number) using both measurement campaigns and digital engineering workflows. Nineteen load-speed operating points in a 1L 3-cylinder GDI SI engine were measured and modelled. The measurements for in-cylinder pressure and emissions were repeated at each operating point for three types of fuel: gasoline (E0, 0% by volume of ethanol blend), E10 (10 % by volume of ethanol blend) and E20 (20% by volume of ethanol blend).
Technical Paper

Study of Effects of Deposit Formation on GDi Injector and Engine Performance

2020-09-15
2020-01-2099
Gasoline Direct Injection (GDI) vehicles now make up the majority of European new car sales and a significant share of the existing car parc. Despite delivering measurable engine efficiency benefits, GDI fuel systems are not without issues. Fuel injectors are susceptible to the formation of deposits in and around the injector nozzles holes. It is widely reported that these deposits can affect engine performance and that different fuels can alleviate the buildup of those deposits. This project aims to understand the underlying mechanisms of how deposit formation ultimately leads to a reduction in vehicle performance. Ten GDI fuel injectors, with differing levels of coking were taken from engine testing and consumer vehicles and compared using a range of imaging and engine tests. At the time of writing, a new GDI engine test is being developed by the Co-ordinating European Council (CEC) to be used by the fuel and fuel additive industry.
Technical Paper

Improving Cold Start and Transient Performance of Automotive Diesel Engine at Low Ambient Temperatures

2016-04-05
2016-01-0826
Ambient temperature has significant impact on engine start ability and cold start emissions from diesel engines. These cold start emissions are accounted for substantial amount of the overall regulatory driving cycle emissions like NEDC or FTP. It is likely to implement the low temperature emissions tests for diesel vehicles, which is currently applicable only for gasoline vehicles. This paper investigates the potential of the intake heating strategy on reducing the driving cycle emissions from the latest generation of turbocharged common rail direct injection diesel engines at low ambient temperature conditions. For this investigation an air heater was installed upstream of the intake manifold and New European Driving Cycle (NEDC) tests were conducted at -7°C ambient temperature conditions for the different intake air temperatures. Intake air heating reduced the cranking time and improved the fuel economy at low ambient temperatures.
Technical Paper

Influence of Coolant Temperature on Cold Start Performance of Diesel Passenger Car in Cold Environment

2016-02-01
2016-28-0142
Diesel engines are the versatile power source and is widely used in passenger car and commercial vehicle applications. Environmental temperature conditions, fuel quality, fuel injection strategies and lubricant have influence on cold start performance of the diesel engines. Strategies to overcome the cold start problem at very low ambient temperature include preheating of intake air, coolant, cylinder block. The present research work investigates the effect of coolant temperatures on passenger car diesel engine’s performance and exhaust emission characteristics during the cold start at cold ambient temperature conditions. The engine is soaked in the -7°C environment for 6 hours. The engine coolant is preheated to the desired coolant temperatures of 10 and 20°C by an external heater and the start ability tests were performed.
Journal Article

Performance, Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE3-4)/ Wide Distillation Fuel (WDF) Blends in Premixed Low Temperature Combustion (LTC)

2015-04-14
2015-01-0810
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from Initial Boiling Point (IBP) of gasoline to Final Boiling Point (FBP) of diesel. Polyoxymethylene Dimethyl Ethers (PODEn) have high oxygen content and cetane number, are promising green additive to diesel fuel. In this paper, WDF was prepared by blending diesel and gasoline at ratio of 1:1, by volume; the mass distribution of oligomers in the PODE3-4 product was 88.9% of PODE3 and 8.46% of PODE4. Diesel fuel (Diesel), WDF (G50D50) and WDF (80%)-PODE3-4 (20%) (G40D40P20) were tested in a light-duty single-cylinder diesel engine, combustion characteristic, fuel consumption and exhaust emissions were measured. The results showed that: at idling condition, G40D40P20 has better combustion stability, higher heat release rate, higher thermal efficiency compared with G50D50.
Technical Paper

Performance of Naphtha in Different Compression Ignition Combustion Modes under Various EGR Rates

2015-04-14
2015-01-0804
Experimental research were carried out on a compression ignition engine with compression ratio of 17.5 with direct-run Naphtha. Exhaust recirculation ratio sweeps were carried out with three injection strategies. Premixed charge compression ignition, partially premixed combustion and low temperature combustion modes were realized and compared with each other. The first injection strategy is single injection. The injection timing is scanned to form partially premixed combustion and low temperature combustion. The second injection strategy features a large early first injection with fixed timing to form premixed charge and a small second injection near top dead center, which was scanned. The third injection strategy is similar to the traditional diesel injection strategy, which has a small pilot injection with fixed interval before the main injection. Results show that all injection strategies could realize both low NOx and low particulate matter emissions simultaneously.
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Journal Article

Low Ambient Temperature Effects on a Modern Turbocharged Diesel engine running in a Driving Cycle

2014-10-13
2014-01-2713
Engine transient operation has attracted a lot of attention from researchers due to its high frequency of occurrence during daily vehicle operation. More emissions are expected compared to steady state operating conditions as a result of the turbo-lag problem. Ambient temperature has significant influences on engine transients especially at engine start. The effects of ambient temperature on engine-out emissions under the New European Driving Cycle (NEDC) are investigated in this study. The transient engine scenarios were carried out on a modern 3.0 L, V6 turbocharged common rail diesel engine fuelled with winter diesel in a cold cell within the different ambient temperature ranging between +20 °C and −7 °C. The engine with fuel, coolant, combustion air and lubricating oil were soaked and maintained at the desired test temperatures during the transient scenarios.
Technical Paper

Investigation on the Performance of Diesel Oxidation Catalyst during Cold Start at L ow Temperature Conditions

2014-10-13
2014-01-2712
Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC). The results show that conversion efficiency of NOx was higher during acceleration period at −7°C start than the case of 20°C start.
Technical Paper

Improving Ethanol-Diesel Blend Through the Use of Hydroxylated Biodiesel

2014-10-13
2014-01-2776
Due to the emission benefits of the oxygen in the fuel molecule, the interest for the use of ethanol as fuel blend components in compression ignition engines has been increased. However the use of fuel blends with high percentage of ethanol can lead to poor fuel blend quality (e.g. fuel miscibility, cetane number, viscosity and lubricity). An approach which can be used to improve these properties is the addition of biodiesel forming ternary blends (ethanol-biodiesel-diesel). The addition of castor oil-derived biodiesel (COME) containing a high proportion of methyl ricinoleate (C18:1 OH) is an attractive approach in order to i) reduce the use of first generation biodiesel derived from edible sources, ii) balance the reduction in viscosity and lubricity of ethanol-diesel blends due to the high viscosity and excellent lubricity of methyl ricinoleate.
Technical Paper

Thermal Performance of Diesel Aftertreatment: Material and Insulation CFD Analysis

2014-10-13
2014-01-2818
Recent developments in diesel engines lead to increased fuel efficiency and reduced exhaust gas temperature. Therefore more energy efficient aftertreatment systems are required to comply with tight emission regulations. In this study, a computational fluid dynamics package was used to investigate the thermal behaviour of a diesel aftertreatment system. A parametric study was carried out to identify the most influential pipework material and insulation characteristics in terms of thermal performance. In the case of the aftertreatment pipework and canning material effect, an array of different potential materials was selected and their effects on the emission conversion efficiency of a Diesel Oxidation Catalyst (DOC) were numerically investigated over a driving cycle. Results indicate that although the pipework material's volumetric heat capacity was decreased by a factor of four, the total emission reduction was only considerable during the cold start.
Journal Article

Impact of Octane Number on Fuel Efficiency of Modern Vehicles

2013-10-14
2013-01-2614
Fuel quality, including antiknock rating, plays a critical role in enabling optimal operation of advanced gasoline engines. As new designs introduced into the market implement technologies to improve fuel efficiency, the overall octane level of the gasoline pool may need to be increased to ensure optimal performance. Turbocharging, higher compression ratios and downsized displacement all lead to higher combustion pressures and temperatures that make engines more susceptible to knocking. All modern gasoline engines are equipped with knock sensors that detect abnormal combustion resulting from autoignition caused by insufficient octane quality. The ability of an engine to account for the use of lower octane fuel by retarding spark timing and enriching air-fuel ratio to reduce knock is limited, and engine efficiency is directly and adversely impacted when the use of lower octane gasoline is accommodated, resulting in higher fuel consumption.
Journal Article

Research on Unregulated Emissions from an Alcohols-Gasoline Blend Vehicle Using FTIR, HPLC and GC-MS Measuring Methods

2013-04-08
2013-01-1345
Unregulated emissions have become an important factor restricting the development of methanol and ethanol alternative alcohols fuels. Using two light-duty vehicles fuelled with pure gasoline, gasoline blend of 10% and 20% volume fraction of ethanol fuels, gasoline blend of 15% and 30% volume fraction of methanol fuels, New European Driving Cycle (NEDC) emission tests were carried on a chassis dynamometer according to ECE R83-05. High performance liquid chromatography (HPLC), Gas chromatography - Mass spectrometry (GC-MS), Fourier transform infrared spectrometer (FTIR) were used to measure methanol, formaldehyde, acetaldehyde, acetone, benzene, toluene, xylene, ethylene, propylene, 1,3-butadiene and isobutene emissions in the exhaust during the NEDC.
Technical Paper

Research on Gasoline Homogeneous Charge Induced Ignition (HCII) by Diesel in a Light-Duty Engine

2013-04-08
2013-01-1666
Gasoline engines suffer low thermal efficiency and diesel engines have the emission problem of the trade-off between NOx and soot emissions. Homogeneous Charge Induced Ignition (HCII) is introduced using a port injection of gasoline to form a homogeneous charge and using a direct injection of diesel fuel to ignite. HCII has the potential to achieve high thermal efficiency and low emission combustion. However, HCII combustion mode still has problems of high THC emissions at low load and high pressure rise rate at high load. In order to improve the gasoline reactivity and reduce THC emissions, double injection of diesel was applied in HCII mode. In order to reduce peak pressure rise rate (PPRR), a two-staged high-temperature heat release is achieved at suitable engine condition. The effects of HCII mode on combustion and emission characteristics are studied in a light-duty engine.
Technical Paper

A Thermally Efficient DOC Configuration to Improve CO and THC Conversion Efficiency

2013-04-08
2013-01-1582
The purpose of this study is to improve the carbon monoxide (CO) and total hydrocarbons (THC) conversion efficiency of a diesel oxidation catalyst (DOC) by enhancing the monolith thermal behaviour through modification of the substrate cell density and wall thickness. The optimisation is based on catalyst properties (light off performance, conversion efficiency, pressure drop and mechanical durability). These properties were first estimated using theoretical equations derived from literature in order to select commercially available substrates for further modelling studies. The thermal behaviour and conversion efficiency of the selected catalysts under diesel exhaust gas conditions were numerically studied using data from an EU5 diesel engine operating a New European Driving Cycle (NEDC). This simulation was carried out on a commercial exhaust aftertreatment modelling program, AXISUITE. The predictions were compared to a reference coated 400/4 catalyst.
Technical Paper

Impacts of Low-Level 2-Methylfuran Content in Gasoline on DISI Engine Combustion Behavior and Emissions

2013-04-08
2013-01-1317
Research studies show that 2-methylfuran (MF) is a promising gasoline alternative regarding its positive effect on engine performance and emissions. Before using pure MF in spark ignition engines, it is more likely to be used in a low-level blended form in gasoline. An experimental research study was carried out to investigate the impacts of low-level MF content in gasoline (volumetric 10% MF in blend) on direct-injection spark-ignition (DISI) engine combustion behavior and emissions. The tests were conducted on a single-cylinder spray-guided DISI research engine at an engine speed of 1500 rpm under stoichiometric conditions. The engine loads of 3.5 ~ 8.5 bar IMEP were tested and gasoline-optimized spark timing was used. Furthermore, the effects of spark timing, exhaust gas recirculation (EGR) and valve overlap on NOx emissions were tested.
Technical Paper

GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR)

2013-04-08
2013-01-0537
Exhaust Gas Fuel Reforming has potential to be used for on-board generation of hydrogen rich gas, reformate, and to act as an energy recovery system allowing the capture of waste exhaust heat. High exhaust gas temperature drives endothermic reforming reactions that convert hydrocarbon fuel into gaseous fuel when combined with exhaust gas over a catalyst - the result is an increase in overall fuel energy that is proportional to waste energy capture. The paper demonstrates how the combustion of reformate in a direct injection gasoline (GDI) engine via Reformed Exhaust Gas Recirculation (REGR) can be beneficial to engine performance and emissions. Bottled reformate was inducted into a single cylinder GDI engine at a range of engine loads to compare REGR to conventional EGR. The reformate composition was selected to approximate reformate produced by exhaust gas fuel reforming at typical gasoline engine exhaust temperatures.
Journal Article

Dual-Injection as a Knock Mitigation Strategy Using Pure Ethanol and Methanol

2012-04-16
2012-01-1152
For spark ignition (SI) engines, the optimum spark timing is crucial for maximum efficiency. However, as the spark timing is advanced, so the propensity to knock increases, thus compromising efficiency. One method to suppress knock is to use high octane fuel additives. However, the blend ratio of these additives cannot be varied on demand. Therefore, with the advent of aggressive downsizing, new knock mitigation techniques are required. Fortuitously, there are two well-known lower alcohols which exhibit attractive knock mitigation properties: ethanol and methanol. Both not only have high octane ratings, but also result in greater charge-cooling than with gasoline. In the current work, the authors have exploited these attractive properties with the dual-injection, or the dual-fuel concept (gasoline in PFI and fuel additive in DI) using pure ethanol and methanol.
X