Refine Your Search

Search Results

Technical Paper

Steam Reformer/Burner Integration and Analysis for an Indirect Methanol Fuel Cell Vehicle Fuel Processor

2001-03-05
2001-01-0539
This paper focuses on the impact of proper thermal integration between two major components of the indirect methanol fuel cell vehicle fuel processor (reformer and burner). The fuel processor uses the steam reformation of methanol to produce the hydrogen required by the fuel cell. Since the steam reformation is an endothermic process, the required thermal energy is supplied by a catalytic burner. The performance of the fuel processor is very strongly influenced by the extent of thermal integration between the reformer and burner. Both components are modeled as a set of CSTRs (Continuous Stirred Tank Reactors) using Matlab/Simulink. The current model assumes no time lag between the methanol sent into the reformer and the methanol sent into the burner to generate the necessary heat for the reformer reactions to occur.
X