Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Subscale Testbed for Characterizing Regenerable Adsorbents used in Air Revitalization of Spacecraft Atmospheres

2009-07-12
2009-01-2526
A sub-scale testbed for characterizing the dynamic performance of regenerable adsorbents for filtering trace contaminants (TCs) from cabin atmospheres was built and tested. Regenerable adsorbents employed in pressure-swing adsorption (PSA) systems operate in a dynamic environment, where they undergo repeated loading / regeneration cycles. Adsorbents have a given chemical specificity for non-methane TCs depending on their composition, and on the humidity and temperature at which they operate. However, their ability to filter TCs is also affected by contact time, cycle time, regeneration vacuum quality and thermal conditioning.
Technical Paper

Effect of Catalyst Support on the Photocatalytic Destruction of VOCs in a Packed-Bed Reactor

2007-07-09
2007-01-3138
The removal of volatile organic compounds (VOCs) from the air aboard spacecrafts is necessary to maintain the health of crewmembers. The use of photocatalysis has proven effective for the removal of VOCs. A majority of studies have focused on thin films, which have a low adsorption capacity for contaminants and intermediate oxidation byproducts. Thus, this study investigates the use of adsorbent materials impregnated or coated with titania to: (1) provide a system that can remove VOCs for a period of time in the absence of UV irradiation to reduce power requirements and/or offer contaminant removal in the event of lamp failure and (2) improve the photocatalytic oxidation efficiency by concentrating VOCs and intermediate oxidation byproducts near the surface of the photocatalyst. Two adsorbent materials (porous silica gel and BioNuchar120 activated carbon) and glass beads were tested as catalyst supports for the destruction of a target VOC, in this case methanol (Co = 50 ppmv).
Technical Paper

Performance of a Magnetically Agitated Photocatalytic Reactor for Oxidation of Ersatz AES Condensate

2006-07-17
2006-01-2084
A magnetically agitated photocatalytic reactor (MAPR) has been developed and tested as a post-processor in the past using phenol and reactive red dye to simulate these waste components, yet these components ignore factors that may hinder a photocatalytic post processor including competitive adsorption of various organic compounds and their oxidation byproducts and the demonstrated detrimental effect of inorganic compounds such as ammonium bicarbonate on photocatalytic oxidation. To assess these effects, this work looks at photocatalytic oxidation of air evaporation subsystem (AES) ersatz water while modifying the photocatalyst mass, magnetic field current and frequency to find the optimal conditions. Additionally, the magnetic photocatalyst has been characterized to observe the assembled structures formed when exposed to the magnetic field array in the MAPR and the crystallinity of the titanium dioxide coating.
Technical Paper

Synthesis and Evaluation of Activated Carbon Composite Photocatalysts for Surface Enhanced Raman Scattering: Photocatalytic Layer Coating

2004-07-19
2004-01-2332
Finding a manner to effectively filter water to the purest standards is an ongoing battle for various sectors of science. We present a set of experiments that will report the preparation of the photocatalytic component of our composite particle via sol-gel coatings with titanium n-butoxide with subsequent heat treatment at 500°C for three hours in Argon. Our ultimate goal is to create a particle with regenerative capabilities along with a surface enhanced Raman scattering effect. Characterization techniques were performed using SEM-EDS, and XRD.
Technical Paper

Low Pressure Greenhouse Concepts for Mars: Atmospheric Composition

2002-07-15
2002-01-2392
The main principles of artificial atmospheric design for a Martian Greenhouse (MG) are described based on: 1. Cost-effective approach to MG realization; 2. Using in situ resources (e.g. CO2, O2, water); 3. Controlled greenhouse gas exchange by using independent pump in and pump out technologies. We show by mathematical modeling and numerical estimates based on reasonable assumptions that this approach for Martian deployable greenhouse (DG) implementation could be viable. A scenario of MG realization (in terms of plant biomass/photosynthesis, atmospheric composition, and time) is developed. A list is given of technologies (natural water collection, MG inflation, oxygen collection and storage, etc.) that are used in the design. The conclusions we reached are: 1. Initial stocks of oxygen and water probably would be required to initiate plant germination and growth; 2. Active control of MG ventilation could provide proper atmospheric composition for each period of plant growth; 3.
Technical Paper

Fundamental Issues in Automotive Veiling Glare

1997-02-24
970227
The veiling glare effect in automotive vehicles consists of diffuse and specular scattering of sunlight onto and from the windshield. This effect occurs over a wide range of solar elevation angles and increases with increased degree of inclination of the windshield. Thus its effect on visual acuity must be considered in automotive design. The present research on the subject of veiling glare only addresses scattering from a clean windshield and ignores the larger effect of scattering from dust, dirt or haze on the front and back faces of the windshield since the latter is operator dependent (can be removed by cleaning the windshield). In this paper, we present an analysis of autmotive veiling glare that takes into account windshield reflectivity without and with coatings, and the characteristics of dashboard cover materials.
X