Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Smokeless Combustion within a Small-Bore HSDI Diesel Engine Using a Narrow Angle Injector

2007-04-16
2007-01-0203
Combustion processes employing different injection strategies in a High-Speed Direct Inject (HSDI) diesel engine were investigated using a narrow angle injector (70 degree). Whole-cycle combustion was visualized using a high-speed digital video camera. The liquid spray evolution process was imaged by the Mie-scattering technique. Different injection strategies were employed in this study including early pre-Top Dead Center (TDC) injection, post-TDC injection, multiple injection strategies with an early pre-TDC injection and a late post-TDC injection. Smokeless combustion was obtained under some operating conditions. Compared with the original injection angle (150 degree), some new combustion phenomena were observed for certain injection strategies. For early pre-TDC injection strategies, liquid fuel impingement is observed that results in some newly observed fuel film combustion flame (pool fires) following an HCCI-like weak flame.
Technical Paper

Low Temperature Combustion within a Small Bore High Speed Direct Injection (HSDI) Diesel Engine

2005-04-11
2005-01-0919
Homogeneous Charge Compression Ignition (HCCI) combustion employing single main injection strategies in an optically accessible single cylinder small-bore High-Speed Direct Injection (HSDI) diesel engine equipped with a Bosch common-rail electronic fuel injection system was investigated in this work. In-cylinder pressure was taken to analyze the heat release process for different operating parameters. The whole cycle combustion process was visualized with a high-speed digital camera by imaging natural flame luminosity. The flame images taken from both the bottom of the optical piston and the side window were taken simultaneously using one camera to show three dimensional combustion events within the combustion chamber. The engine was operated under similar Top Dead Center (TDC) conditions to metal engines. Because the optical piston has a realistic geometry, the results presented are close to real metal engine operations.
Technical Paper

The Effects of Cylinder Head Deformation and Asymmetry on Exhaust Valve Thermo-Mechanical Stresses

1998-02-23
981034
A geometrically accurate, three-dimensional finite element model of a Diesel engine exhaust valve and cylinder head assembly has been developed to analyze the effect of cylinder head interactions on exhaust valve stresses. Results indicate that a multi-lobed stress pattern occurs around the exhaust valve head due to cylinder head deformation, stiffness variations, and thermal asymmetry. Consequently, peak valve bending and hoop stresses from the three-dimensional model are 48% and 40% higher, respectively, than for the two-dimensional, axisymmetric model. These results indicate the degree of model complexity required for more accurate analyses of exhaust valve operating stresses.
X