Refine Your Search

Topic

Search Results

Technical Paper

Ensemble Empirical Mode Decomposition for Characterising Exhaust Nano-Scale Particle Emissions of a Turbocharged Gasoline Power Unit

2023-10-31
2023-01-1665
This paper presents a method for analysing the characteristics of nano-scale particles emitted from a 1.6 Litre, 4-stroke, gasoline direct injection (GDI) and turbocharged spark ignition engine fitted with a three-way catalytic converter. Ensemble Empirical Mode Decomposition (EEMD) is employed in this work to decompose the nano-scale particle size spectrums obtained using a differential mobility spectrometer (DMS) into Intrinsic Mode Functions (IMF). Fast Fourier Transform (FFT) is then applied to each IMF to compute its frequency content. The results show a strong correlation between the IMFs of specific particle ranges and the IMFs of the total particle count at various speed and load operating conditions. Hence, it is possible to characterise the influence of specific nano-scale particle ranges on the total particulate matter signal by analysing the frequency components of its IMFs using the EEMD-FFT method.
Technical Paper

Multi-Objective Optimization of the Fuel Cell Hybrid Electric Powertrain for a Class 8 Heavy-Duty Truck

2023-04-11
2023-01-0473
To decarbonize heavy-duty vehicles solely through electrification with batteries is challenging as large batteries are required for a meaningful range, severely impacting payload. Employment of hybrid electric powertrains where fuel cells are integrated with batteries can deliver increased range and payload. However, the energy balance between the fuel cell and the battery needs to be analyzed to optimize the sizing of the powertrain components. This study has performed a multi-objective optimization using genetic algorithm to obtain the optimum range and hydrogen consumption for a DAF 44 tons heavy-duty truck. The proposed truck powertrain has been numerically modelled in AVL CRUISE M software. The electric drive from Involution Technologies Ltd and Bramble Energy Ltd’s printed circuit board fuel cell (PCBFC) are used in the model.
Technical Paper

Design of Drive Cycle for Electric Powertrain Testing

2023-04-11
2023-01-0482
Drive cycles have been the official way to create standardized comparisons of fuel economy and emission levels between vehicles. Since the 1970s these have evolved to be more representative of real-world driving, with today’s standard being the World Harmonized Light Vehicle Testing Procedure. The performance of battery electric vehicles which consist of electric drives, battery, regenerative braking and their management systems may differ when compared to that of vehicles powered by conventional internal combustion engines. However, drive cycles used for evaluating the performance of vehicles, were originally developed for conventional powered vehicles. Moreover, the kinematic parameters that can distinguish the real-world performance of the differently powered vehicles are not fully known. This work aims to investigate the difference between vehicles powered by pure internal combustion engine, electric hybrid and pure electric drive.
Technical Paper

Numerical Simulation of Ethanol-Based Fuels in an F1 Power Unit

2023-04-11
2023-01-0739
Formula (1) vehicles have transitioned from E5 to E10 fuel for the 2022 season to reduce carbon emissions and by 2026 the vehicles are required to use 100% sustainable fuels. The aim of this paper is to identify the operating envelope of the F1 power unit for E10-E100 fuel and the resulting emission levels for these fuel compositions using numerical simulations. To achieve this aim an F1 engine model has been developed in GT-Suite with reference to the FIA 2022 Technical Regulations. The combustion model has been validated using data obtained from literature relating to laminar and turbulent flame speed, friction and heat transfer characteristics within the combustion chamber. One of the main challenges of using ethanol-based fuels is the increased levels of formaldehyde in the tailpipe.
Technical Paper

Feature Extraction from a Crankshaft Instantaneous Speed Signal of an Automotive Power Unit using Cepstrum Analysis

2023-04-11
2023-01-0214
Internal combustion (IC) engines are the most common power unit technology found in road vehicles. The process of combustion within IC engines is linked to the output torque and overall powertrain performance. This work presents a method of analysing the parameters of cylinder pressure and crankshaft instantaneous speed signals obtained from a turbocharged, 4-stroke, 4-cylinder, 1.6 Litre, spark ignition, gasoline direct injection engine at various speed and load operating conditions. Whereas cepstrum analysis is used in the present work to extract critical features characterising the combustion process. Cepstrum analysis showed that the location of maximum heat release can be directly obtained from the quefrency of the instantaneous crank speed. This paper presents a systematic scheme for applying cepstrum for obtaining combustion features from the instantaneous crank speed signal.
Technical Paper

The Effects of Corrosion on Particle Emissions from a Grey Cast Iron Brake Disc

2022-09-19
2022-01-1178
Reducing exhaust emissions has been a major focus of research for a number of years since internal combustion engines (ICE) contribute to a large number of harmful particles entering the environment. As a way of reducing emissions and helping to tackle climate change, many countries are announcing that they will ban the sale of new ICE vehicles soon. Electrical vehicles (EVs) represent a popular alternative vehicle propulsion system. However, although they produce zero exhaust emissions, there is still concern regarding non-exhaust emission, such as brake dust, which can potentially cause harm to human health and the environment. Despite EVs primarily using regenerative braking, they still require friction brakes as a backup as and when required. Moreover, most EVs continue to use the traditional grey cast iron (GCI) brake rotor, which is heavy and prone to corrosion, potentially exacerbating brake wear emissions.
Technical Paper

Assessment of the Powertrain Electrification for a Heavy-Duty Class 8 Truck for Two Different Electric Drives

2022-08-30
2022-01-1123
Electrification is one of the main solutions for the decarbonization of the transport system. It is employed widely by the automotive industry in light- and medium-duty vehicles and recently started to be considered in heavy-duty applications. However, powertrain electrification of heavy-duty vehicles, especially for Class 8 trucks, is very challenging. In this study, the battery-electric powertrain energy and technical performance of a DAF 44 tones truck are compared for two different electric drives. The case study truck is modeled in AVL CRUISE M software and the battery electric powertrain is evaluated for long haul driving cycle. The minimum number of battery packs is determined by defining the lowest energy consumption of the powertrain designed for the proposed drive cycle. Also, a transient analysis is accomplished to investigate the impact of various electric drives on energy consumption and performance of the proposed electric powertrain.
Technical Paper

Energy Assessment of the Electric Powertrain System of a Formula Student Electric Race Car

2022-08-30
2022-01-1124
While the shift to vehicle electrification plays a pivotal role in governments’ targets towards carbon neutrality, there exists certain technical challenges that need to be addressed. The motorsport car industry is also affected by this policy with the electric cars being included in the formula SAE and formula E competitions as one of the main categories. Moreover, there is a gap in the literature in energy assessment of the electric powertrain used in Formula SAE (FSAE) and Formula Student (FS) cars. In this paper, a Formula Student electric car powertrain was designed as a case study for energy analysis. The proposed electric powertrain is equipped with a four-wheel drive system. The vehicle was modelled in AVL CRUISE M software using technical and measured lab data as input parameters. Simulations were run in a transient driving cycle for a real circuit layout used in previous SAE competitions.
Technical Paper

Combustion and Emissions Performance of Simulated Syngas/Diesel Dual Fuels in a CI Engine

2022-08-30
2022-01-1051
Small diesel engines are a common primer for micro and mini-grid systems, which can supply affordable electricity to rural and remote areas, especially in developing countries. These diesel generators have no exhaust after-treatment system thus exhaust emissions are high. This paper investigates the potential of introducing simulated synthetic gas (syngas) to diesel in a small diesel engine to explore the opportunities of widening fuel choices and reducing emissions using a 5.7kW single cylinder direct injection diesel generator engine. Three different simulated syngas blends (with varying hydrogen content) were prepared to represent the typical syngas compositions produced from downdraft gasification and were injected into the air inlet. In-cylinder pressure, ignition delay, premixed combustion, combustion stability, specific energy consumption (SEC), and gaseous and particle emissions were measured at various power settings and mixing ratios.
Technical Paper

Energy Optimal Control for Formula One Race Car

2022-08-30
2022-01-1043
Formula One (F1) is considered to be the forefront of innovation for the automotive and motorsport industry. One of the key provisions has been towards the inclusion of the Energy Recovery System (ERS) since 2014 in F1 regulations. ERS comprises Motor Generator Unit-Heat (MGU-H), Motor Generator Unit-Kinetic (MGU-K) and an Energy Storage (ES). This has not only converted the conventional powertrain into a hybrid power-split device, but also imposed constraints on the fuel energy available, energy recovered and deployed by MGU-K, and charge stored in ES, along with various other parameters. Although the objective for a F1 race is to minimize lap-time, it is obvious that there is no unique control path or decision to meet this objective. This builds up needs to optimally control the power-split and energy of the system.
Technical Paper

Assessment of the Impact of Vehicle Emissions on Air Quality Changes during COVID-19 Lockdown in Bogota, Colombia

2022-03-29
2022-01-0583
The COVID-19 pandemic has forced governments to implement rigorous containment measures on reduction or cessation of human mobility, transportation and economic activities, to control the spread of the virus. This is considered as a unique opportunity to study the impact of local lockdowns periods, especially, on the vehicle emission levels, and urban air quality in cities with high pollution levels, such as Bogota, Colombia. The first case was confirmed in Colombia on March 6, 2020, since then to prevent its propagation, the government declared a national lockdown starting from March 20 until August 31, 2020. Therefore, this study attempted to analyse the air quality in Bogota by assessing the concentrations of the atmospheric pollutants NO₂, SO₂, O₃, CO, PM₂.₅ and PM₁₀ during the lockdown period and the corresponding concentrations levels during the same period in 2018 and 2019. The data for this pilot study was obtained from the air quality monitoring stations of Bogota.
Technical Paper

Frequency Coupling Analysis in Spark Ignition Engine Using Bispectral Method and Ensemble Empirical Mode Decomposition

2022-03-29
2022-01-0481
Internal combustion (IC) engines are the current dominant power source used in the automotive industry for hybrid vehicles. The combustion process of IC engines involves various parameters, which are linked to the overall performance of the driveline. Therefore, finding the frequency coupling between the manifold pressure, in-cylinder pressure and output crankshaft speed will provide an insight into the reasons for torque fluctuations and its effect on driveline performance. The present work introduces a methodology to analyze cylinder pressure, manifold pressure and instantaneous crank speed signals measured from a 4 cylinder, 1.6 Litre, Gasoline Direct Injection Engine at different speed conditions to identify the frequency coupling between these signals. This work uses Ensemble Empirical Mode Decomposition (EEMD) as a de-noising method and Bispectral analysis for examining the presence of a frequency coupling from the signals.
Technical Paper

Development of a PN Surrogate Model Based on Mixture Quality in a GDI Engine

2021-09-05
2021-24-0013
A novel surrogate model is presented, which predicts the engine-out Particle Number (PN) emissions of a light-duty, spray-guided, turbo-charged, GDI engine. The model is developed through extensive CFD analysis, carried out using the Siemens Simcenter STAR-CD, and considers a range of part-load operating conditions and single-variable sweeps where control parameters such as start of injection and injection pressure are varied in isolation. The work is attached to the Ford-led APC6 DYNAMO project, which aims to improve efficiency and reduce harmful emissions from the next generation of gasoline engines. The CFD work focused on the air exchange, fuel spray and mixture preparation stages of the engine cycle. A combined Rosin-Rammler and Reitz-Diwakar model, calibrated over a wide range of injection pressure, is used to model fuel atomization and secondary droplets break-up.
Technical Paper

Gap Analysis and Future Needs of Tyre Wear Particles

2021-04-06
2021-01-0621
Non-exhaust and exhaust particles from traffic were evaluated to account for nearly equal proportions in traffic-related emissions. Among non-exhaust emissions, tyre wear has been a crucial contributor to Particulate matter (PM), with its mass contribution as high as 30% to non-exhaust emissions from traffic. As exhaust emissions control regulation becomes stricter, which leads to a substantial reduction in exhaust emissions from road traffic, currently relative contributions of non-exhaust particles generated from tyre wear to PM is becoming more important. Accordingly, possible regulatory requirement and effectively control strategy of tyre wear particles needs to be developed. This review paper covers the physical properties, chemical composition, emission rates, and mathematic model development of tyre wear particles.
Technical Paper

A Case for Technology - Forcing Transformative Changes in the F1 Power Unit

2021-04-06
2021-01-0371
Formula 1 has always played a major role in technological advancements within the automotive and motorsport sectors. The adaptive changes introduced for the Power Unit (PU) in 2014 forced constructors, in collaboration with industry partners, to invent technologies for exceeding 50% brake thermal efficiency within a short span of time, demonstrating that technology-forcing regulations through motorsport is the favorable route to achieve transformative changes within the automotive sector. Therefore, in an attempt to address arising global warming and health concerns, the present work analytically examines the ambient air quality in track stadia during F1 race events to identify potential PU exhaust emission targets. It models the volume of air contained within the circuits located near heavily built-up areas assuming stagnant air conditions and uniform mixing.
Technical Paper

Analysis of Energy Recovery System of Formula One Cars

2021-04-06
2021-01-0368
This study analyzes the performance of the Energy Recovery System (ERS) of a Formula One car (F1) based on the qualification performance of 19 drivers for the first calendar race of the 2019 FIA Formula One World Championship®. In this study, the race circuit analysed was split into different sectors to examine the energy transfer between the Motor Generator Unit-Kinetic (MGU-K) and the Energy Storage (ES) systems. Positive Kinetic Energy (PKE) concept was used for estimating the energy deployment potential of the ERS along with numerical simulations for estimating the energy recovering potential. This investigation highlights the strategies used by different drivers and the effect of driver to driver variation on their ERS performance during qualification. The methodology demonstrated in this study is able to identify the correlation between the unique driving style of individual drivers and the ERS strategies used by the teams for maximizing the performance of their car.
Technical Paper

Particle Emissions and Size Distribution across the DPF from a Modern Diesel Engine Using Pure and Blended GTL Fuels

2020-09-15
2020-01-2059
A Gas to liquid (GTL) fuel was investigated for its combustion and emission performance in an IVECO EURO5 DI diesel engine with a DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particle Filter) installed. The composition of the GTL fuel was analyzed by GC-MS (gas chromatography-mass spectrometry) and showed the carbon distribution of 8-20. Selected physical properties such as density and distillation were measured. The GTL fuel was blended with standard fossil diesel fuel by ratios of diesel/GTL: 100/0, 70/30, 50/50, 30/70 and 0/100. The engine was equipped with a pressure transducer and crank angle encoder in one of its cylinders. The properties of ignition delay and maximum in-cylinder pressure were studied as a function of fraction of the GTL fuel. Particle emissions were measured using DMS500 particle size instrument at both upstream (engine out) and downstream of the DPF (DPF out) for particle number concentrations and size distribution from 5 nm to 1000 nm.
Technical Paper

An Improved Heat Release Rate (HRR) Model for the Analysis of Combustion Behaviour of Diesel, GTL, and HVO Diesel

2020-09-15
2020-01-2060
Heat Release Rate (HRR) analysis is indispensable in engine research. The HRR of Internal Combustion Engines (ICEs) is most sensitive to gamma (γ). The proposed HRR models in literature were largely based on γ expressed as functions of temperature. However, γ is depended on temperature as well as the excess air ratio (λ). In this work, an improved HRR model based on γ(T, λ) was used to investigate the combustion behaviour of standard diesel, Gas-to-Liquid (GTL) diesel and Hydrotreated Vegetable Oil (HVO) diesel in a 96 kW, multiple fuel injection, Euro V, Direct Injection (DI) engine. The improved HRR model (Leeds HRR model) was validated for the alternative fuels by comparing the fuel masses predicted by the model to the measured fuel masses. The fuel masses predicted by the Leeds HRR model were also compared to the predictions from four HRR models that were based on γ(T).
Technical Paper

MPC Controller for Autonomous Formula Student Vehicle

2020-04-14
2020-01-0089
Autonomous vehicles in formula student competition is a relatively new competition, with most of the teams testing new concepts every year with their challenger for the season. A background search conducted reflects the various concept changes offered by the FS teams in Formula student Germany each year. Hence, it can be concluded that the teams are uncertain about many concepts in an autonomous vehicle. This paper explores one such aspect; the choice of controller governs the steering capabilities of the autonomous vehicle. An MPC controller is used to build a basic controller model for the autonomous vehicle in the formula student competition. A bicycle model representative of the Oxford Brookes Racing team's electric vehicle is modeled, and the MPC controller is used to check various vehicle dynamic parameters in Simulink.
Technical Paper

A New Simulation Approach of Estimating the Real-World Vehicle Performance

2020-04-14
2020-01-0370
Due to the variability of real traffic conditions for vehicle testing, real-world vehicle performance estimation using simulation method become vital. Especially for heavy duty vehicles (e.g. 40 t trucks), which are used for international freight transport, real-world tests are difficult, complex and expensive. Vehicle simulations use mathematical methods or commercial software, which take given driving cycles as inputs. However, the road situations in real driving are different from the driving cycles, whose speed profiles are obtained under specific conditions. In this paper, a real-world vehicle performance estimation method using simulation was proposed, also it took traffic and real road situations into consideration, which made it possible to investigate the performance of vehicles operating on any roads and traffic conditions. The proposed approach is applicable to all kind of road vehicles, e.g. trucks, buses, etc. In the method, the real-road network includes road elevation.
X