Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation of Spark Ignition Engine Combustion Using Lagrangian Code

1993-11-01
931908
A new method of solution is presented for the equations governing unsteady flow field during compression and combustion in a spark ignition. The Lagrangian approach, an application of a vortex method to the three-dimensional solution of the continuity and conservation equations, avoids the need for a turbulence model and wall laws close to the surfaces. Vorticity is introduced as blobs close to the wall which diffuse into the main flow. The potential equation is solved by the boundary element method. Combustion is treated as a thin sheet propagating at laminar flame speed using an extension of the simple line interface method to three-dimensions, now called a simple plane interface method. The code is demonstrated in application to a wedge shaped combustion chamber with surface irregularities closely approximating the actual shape.
Technical Paper

Observation of the Effect of Swirl on Flame Propagation and the Derived Heat Release and Mass Burning Rates

1987-11-08
871175
A high speed research engine has optical access to over 80% of the combustion chamber volume through a piston with a quartz window. The engine has been used to study the effect of swirl on the spark-ignited combustion by means of high speed photography and analysis of combustion-time data. Results over the speed, swirl and mixture strength range show the flame travel derived from the pressure to agree with the measured flame travel to within 3% on average. Turbulent to laminar flame speed ratios as high as 45 occur under high swirl conditions. However it was not possible to find a predictive model which could explain the turbulent flame speed in terms of engine design variables.
Technical Paper

Parametric Investigations into Combustion of Seed Oils in a Diesel Engine

1987-11-08
871240
A thermodynamic model has been employed to study the effect of changing injection timing, spray angle, fuel density, fuel viscosity, chemical reaction rate constants and air entrainment on the combustion performance of seed oils and their methyl esters in an open chamber diesel engine. It is shown that the most important valuables affecting the performance are fuel density and fuel viscosity. It is deduced that modification of these physical properties can lead to substantial improvement in the combustion performance of the seed oils.
X