Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Application of Empirical Asperity Contact Model to High Fidelity Wet Clutch System Simulations

2019-04-02
2019-01-1301
Wet clutches are complex hydrodynamic devices used in both conventional and electrified drivetrain systems. They couple or de-couple powertrain components for applications such as automatic shifting, engine disconnect and torque vectoring. Clutch engagement behaviors vary greatly, depending on design parameters and operating conditions. Because of their direct impact on vehicle drivability and fuel economy, a predictive CAE model is desired for enabling analytical design verification processes. During engagement, a wet clutch transmits torque through viscous shear and asperity contact. A conventional Coulomb’s model, which is routinely utilized in shift simulations, is inadequate to capture non-linear hydrodynamic effects for higher fidelity analysis. Extensive research has been conducted over the years to derive hydrodynamic torque transfer models based on 1D squeeze film or 3D CFD. They are typically coupled with an elastic asperity contact model for mechanical torque transfer.
Technical Paper

Quantifying the Effect of Initialization Errors for Enabling Accurate Online Drivetrain Simulations

2019-04-02
2019-01-0347
Simulations conducted on-board in a vehicle control module can offer valuable information to control strategies. Continued improvements to on-board computing hardware make online simulations of complex dynamic systems such as drivetrains within reach. This capability enables predictions of the system response to various control actions and disturbances. Implementation of online simulations requires model initialization that is consistent with the physical drivetrain state. However, sensor signals and estimated variables are susceptible to errors, compromising the accuracy of the initialization and any future state predictions as the simulation proceeds through the numerical integration process. This paper describes a drivetrain modeling and analysis method that accounts for initialization errors, thereby enabling accurate simulations of system behaviors.
Journal Article

Development of Empirical Asperity Contact Model for Wet Friction Material

2019-04-02
2019-01-0346
A wet clutch couples or decouples gear elements to alter torque paths in an automatic transmission system. During the gear shifting event, the clutch torque is directly transmitted to the output shaft. Hence, clutch torque heavily influences the dynamics of the transmission. In order to evaluate the behavior of the transmission early and efficiently, the development process increasingly relies on high-fidelity transmission system simulations with added complexity. However, a wet clutch continues to be modeled using Coulomb’s friction in a typical shift simulation. Its linear framework does not physically represent non-linear hydrodynamic effects due to the presence of oil layer during clutch engagement. To make up the lack of physics, Coulomb’s clutch model often requires extensive tuning to match actual shift behaviors.
X