Refine Your Search

Topic

Search Results

Technical Paper

Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts

2016-11-07
2016-22-0014
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

2014-11-10
2014-22-0015
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

2011-11-07
2011-22-0008
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Farside Impacts

2006-11-06
2006-22-0012
The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulated farside impacts. Two series of sled tests simulating farside impacts were completed with crash dummies of different sizes, masses and designs to determine the forces and moments on the neck associated with loading of the shoulder belt. The tests were also performed to help determine the appropriate dummy to use in further testing. The BioSID and SID-IIs reasonably simulated the expected kinematics response and appeared to be reasonable dummies to use for further testing. Analysis also showed that dummy injury measures were lower than injury assessment reference values used in development of side impact airbags.
Technical Paper

Field Operational Tests - Evaluating Driver-Assistance Systems Under Real World Conditions

2006-10-16
2006-21-0049
This paper reviews the field operational test (FOT) methodology adopted in recent years for the evaluation of driver-assistance systems. The Road Departure Crash Warning System program is used both for illustration and as a case study. This project involved an extensive field operational test of a driver-assistance system using volunteers from the general public who drove instrumented research vehicles in place of their normal cars. Objective and subjective data were collected in these trials, and comparisons were made between driving behavior under conditions where the systems were either enabled or disabled. This paper presents sample results from the analyses and draws conclusions on the strengths and weaknesses of the FOT method.
Technical Paper

A Method for Documenting Locations of Rib Fractures for Occupants in Real-World Crashes Using Medical Computed Tomography (CT) Scans

2006-04-03
2006-01-0250
A method has been developed to identify and document the locations of rib fractures from two-dimensional CT images obtained from occupants of crashes investigated in the Crash Injury Research Engineering Network (CIREN). The location of each rib fracture includes the vertical location by rib number (1 through 12), the lateral location by side of the thorax (inboard and outboard), and the circumferential location by five 36-degree segments relative to the sternum and spine. The latter include anterior, anterior-lateral, lateral, posterior-lateral, and posterior regions. 3D reconstructed images of the whole ribcage created from the 2D CT images using Voxar software are used to help identify fractures and their rib number. A geometric method for consistently locating each fracture circumferentially is described.
Technical Paper

Development of ATD Installation Procedures Based on Rear-Seat Occupant Postures

2005-11-09
2005-22-0018
The initial positioning of anthropomorphic test devices (ATDs) can influence the outcomes of crash tests. Current procedures for positioning ATDs in rear seats are not based on systematic studies of passenger postures. This paper compares the postures of three side-impact ATDs to the postures of 24 men and women in three vehicle rear seats and 16 laboratory conditions. When positioned using current procedures, the locations of the ES-2 and SID-HIII ATD heads are generally rearward of those observed with similar-size passengers. The SID-IIs head locations matched the expected locations of heads of passengers of similar size more closely. As the seat back angle was increased, people reclined less than the ATDs. Based on these findings, a new ATD positioning procedure for rear seats was developed. The primary objective of the new procedure is to place the ATD head in the location that is most likely for people of similar size.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Frontal Impacts

2003-10-27
2003-22-0017
The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that “crisscrossed” the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts.
Technical Paper

Methods for In-Vehicle Measurement of Truck Driver Postures

2001-11-12
2001-01-2821
Effective application of human figure models to truck interior design requires accurate data on the postures and positions of truck drivers. Errors in positioning of figure models propagate to errors in reach, visibility, and other analyses. This paper describes methods used in a recent study to measure in-vehicle driving postures in Class 6, 7, and 8 trucks. A three-dimensional coordinate measurement machine was used to measure body landmark locations after a driver completed a short road course. The data were used to validate posture-prediction models developed in a previous laboratory study. Vehicle calibration, driver selection, and testing methods are reviewed.
Technical Paper

Development of a Reusable, Rate-Sensitive Abdomen for the Hybrid III Family of Dummies

2001-11-01
2001-22-0002
The objective of this work was to develop a reusable, rate-sensitive dummy abdomen with abdominal injury assessment capability. The primary goal for the abdomen developed was to have good biofidelity in a variety of loading situations that might be encountered in an automotive collision. This paper presents a review of previous designs for crash dummy abdomens, a description of the development of the new abdomen, results of testing with the new abdomen and instrumentation, and suggestions for future work. The biomechanical response targets for the new abdomen were determined from tests of the mid abdomen done in a companion biomechanical study. The response of the abdominal insert is an aggregate response of the dummy’s entire abdominal area and does not address differences in upper versus lower abdominal response, solid versus hollow organs, or organ position or mobility.
Technical Paper

Anthropometry for WorldSID A World-Harmonized Midsize Male Side Impact Crash Dummy

2000-06-19
2000-01-2202
The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Research Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.
Technical Paper

Methods for Laboratory Investigation of Airbag-Induced Thermal Skin Burns

1999-03-01
1999-01-1064
Two new techniques for investigating the thermal skin-burn potential of airbags are presented. A reduced-volume airbag test procedure has been developed to obtain airbag pressures that are representative of a dynamic ridedown event during a static deployment. Temperature and heat flux measurements made with this procedure can be used to predict airbag thermal burn potential. Measurements from the reduced-volume procedure are complemented by data obtained using two gas-jet simulators, called heatguns. Gas is vented in controlled bursts from a large, heated, pressurized tank of gas onto a target surface. Heat flux measurements on the target surface have been used to develop quantitative models of the relationships between gas jet characteristics and burn potential.
Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Tests Characterizing Performance of an Adaptive Cruise Control System

1997-02-24
970458
The tests described here have been used to provide a preliminary checkout of the control functionality of a prototype adaptive cruise control (ACC) system being used in a field operational test of intelligent cruise control. The results presented provide an initial characterization of the headway control performance of the ACC system. The inputs to these tests are the speed of the preceding vehicle. The results of the tests are based upon measurements of range, range rate, velocity, transmission shift commands, and velocity commands resident within the ACC system. Numerical performance measures are derived from these data and used to characterize system performance quantitatively. Results from these types of tests could be used in assessing differences in headway control characteristics associated with various ACC systems.
Technical Paper

Development of a New Seating Accommodation Model

1996-02-01
960479
Dynamic seat-position testing conducted recently at UMTRI on several different vehicles indicates that, in many cases, the current seating accommodation model represented in SAE J1517 does not accurately predict the distribution of driver seat positions. In general, J1517 tends to predict population percentile seat positions that are forward of observed percentile seat positions, and differences can be as much as 60 mm. It was hypothesized that vehicle factors other than seat height can have substantial and independent effects on driver seat position. The effects of steering-wheel position, seat height, seat-cushion angle, and transmission type on driver fore/aft seat position are being investigated, and results are being used to develop a new driver seating accommodation model called SAM.
Technical Paper

A Laboratory Technique for Assessing the Skin Abrasion Potential of Airbags

1993-03-01
930644
In recent investigations of airbag deployments, drivers h v c reported abrasions to the face, neck, and forearms due to deploying airbags, A study of the airbag design and deployments parameters affecting the incidence and severity of abrasions caused by driver-side airbags has led to the development of a laboratory test procedure to evaluate the potential of an airbag design m cause skin injury This report describes the procedure, which is based an static deployments of airbags into a cylindrical lest fixture. The target area is covered with a material that responds to abrasion-producing events in a manner related to human skin tolerance. Test results show excellent correlation with abrasion injuries produced by airbag deployments into the skin of human volunteers.
Technical Paper

Repeatability of the Tilt-Table Test Method

1993-03-01
930832
Tilt-table testing is one means of quantifying the static roll stability of highway vehicles. By this technique, a test vehicle is subjected to a physical situation analogous to that experienced in a steady state turn. Although the analogy is not perfect, the simplicity and fidelity of the method make it an attractive means for estimating static rollover threshold. The NHTSA has suggested the tilt-table method as one means of regulating the roll stability properties of light trucks and utility vehicles. One consideration in evaluating the suitability of any test method for regulatory use is repeatability, both within and among testing facilities. As a first step toward evaluating the repeatability of the tilt-table method, an experimental study examining the sensitivity of tilt-table test results to variables associated with methodology and facility was conducted by UMTRI for the Motor Vehicle Manufacturers Association. This paper reports some of the findings of that study.
Technical Paper

Side Impacts to the Passenger Compartment — Clinical Studies from Field Accident Investigations

1989-02-01
890379
The side impact, recently and currently the subject to of much debate, controversy and proposed NHTSA rule making, is a difficult type of crash to significantly reduce serious injuries and fatalites. Results from real-world crash investigations presents a confusing picture for the near-side passenger compartment crash. A direct relationship between the amount of crush and injury severity levels (MAIS) is not apparent. Exemplar cases of tow-a-way/injury crashes are presented at all AIS injury level of drivers in crashes with direct driver door crush damage.
X