Refine Your Search

Topic

Search Results

Technical Paper

Factors Affecting Child Injury Risk in Motor-Vehicle Crashes

2020-03-31
2019-22-0008
Current recommendations for restraining child occupants are based on biomechanical testing and data from national and international field studies primarily conducted prior to 2011. We hypothesized that analysis to identify factors associated with pediatric injury in motor-vehicle crashes using a national database of more recent police-reported crashes in the United States involving children under age 13 where type of child restraint system (CRS) is recorded would support previous recommendations. Weighted data were extracted from the National Automotive Sampling System General Estimates System (NASS-GES) for crash years 2010 to 2015. Injury outcomes were grouped as CO (possible and no injury) or KAB (killed, incapacitating injury, non-incapacitating injury). Restraint was characterized as optimal, suboptimal, or unrestrained based on current best practice recommendations. Analysis used survey methods to identify factors associated with injury.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2017-22-0004
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts

2016-11-07
2016-22-0014
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs.
Technical Paper

A Pilot Study of Occupant Accommodation and Seat Belt Fit for Law Enforcement Officers

2016-04-05
2016-01-1504
Law enforcement officers (LEO) make extensive use of vehicles to perform their jobs, often spending large portions of a shift behind the wheel. Few LEO vehicles are purpose-built; the vast majority are modified civilian vehicles. Data from the field indicate that LEO suffer from relatively high levels musculoskeletal injury that may be due in part to poor accommodation provided by their vehicles. LEO are also exposed to elevated crash injury risk, which may be exacerbated by a compromise in the performance of the occupant restraint systems due to body-borne equipment. A pilot study was conducted to demonstrate the application of three-dimensional anthropometric scanning and measurement technology to address critical concerns related to vehicle design. Detailed posture and belt fit data were gathered from five law enforcement officers as they sat in the patrol vehicles that they regularly used and in a mockup of a mid-sized vehicle.
Technical Paper

Integration of Active and Passive Safety Technologies - A Method to Study and Estimate Field Capability

2015-11-09
2015-22-0010
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers’ head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

2014-11-10
2014-22-0015
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

Effects of Driver Characteristics on Seat Belt Fit

2013-11-11
2013-22-0002
A laboratory study of posture and belt fit was conducted with 46 men and 51 women, 61% of whom were age 60 years or older and 32% age 70 years or older. In addition, 28% of the 97 participants were obese, defined as body mass index ≥ 30 kg/m2. A mockup of a passenger vehicle driver's station was created and five belt anchorage configurations were produced by moving the buckle, outboard-upper (D-ring), and outboard-lower anchorages. An investigator recorded the three-dimensional locations of landmarks on the belt and the participant's body using a coordinate measurement machine. The location of the belt with respect to the underlying skeletal structures was analyzed, along with the length of belt webbing. Using linear regression models, an increase in age from 20 to 80 years resulted in the lap belt positioned 18 mm further forward relative to the pelvis, 26 mm greater lap belt webbing length, and 19 mm greater shoulder belt length.
Technical Paper

Biomechanical Considerations for Assessing Interactions of Children and Small Occupants with Inflatable Seat Belts

2013-11-11
2013-22-0004
NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

2011-11-07
2011-22-0008
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Factors Associated With Abdominal Injury in Frontal, Farside, and Nearside Crashes

2010-11-03
2010-22-0005
The NASS-CDS (1998-2008) and CIREN datasets were analyzed to identify factors contributing to abdominal injury in crash environments where belt use and airbag deployment are common. In frontal impacts, the percentage of occupants sustaining abdominal injury is three times higher for unbelted compared to belted front-row adult occupants (p≺0.0001) at both AIS2+ and AIS3+ injury levels. Airbag deployment does not substantially affect the percentage of occupants who sustain abdominal injuries in frontal impacts (p=0.6171), while belt use reduces the percentage of occupants sustaining abdominal injury in both nearside and farside crashes (p≺0.0001). Right-front passengers in right-side impacts have the highest risk (1.91%) of AIS 3+ abdominal injury (p=0.03). The percentage of occupants with AIS 3+ abdominal injuries does not vary with age for frontal, nearside, or farside impacts.
Technical Paper

Interactions of Out-of-Position Small-Female Surrogates with a Depowered Driver Airbag

2008-11-03
2008-22-0008
The objectives of this study were to examine the response, repeatability, and injury predictive ability of the Hybrid III small-female dummy to static out-of-position (OOP) deployments using a depowered driver-side airbag. Five dummy tests were conducted in two OOP configurations by two different laboratories. The OOP configurations were nose-on-rim (NOR) and chest-on-bag (COB). Four cadaver tests were conducted using unembalmed small-female cadavers and the same airbags used in the dummy tests under similar OOP conditions. One cadaver test was designed to increase airbag loading of the face and neck (a forehead-on-rim, or FOR test). Comparison between the dummy tests of Lab 1 and of Lab 2 indicated the test conditions and results were repeatable. In the cadaver tests no skull fractures or neck injuries occurred. However, all four cadavers had multiple rib fractures.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Farside Impacts

2006-11-06
2006-22-0012
The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulated farside impacts. Two series of sled tests simulating farside impacts were completed with crash dummies of different sizes, masses and designs to determine the forces and moments on the neck associated with loading of the shoulder belt. The tests were also performed to help determine the appropriate dummy to use in further testing. The BioSID and SID-IIs reasonably simulated the expected kinematics response and appeared to be reasonable dummies to use for further testing. Analysis also showed that dummy injury measures were lower than injury assessment reference values used in development of side impact airbags.
Technical Paper

Development of ATD Installation Procedures Based on Rear-Seat Occupant Postures

2005-11-09
2005-22-0018
The initial positioning of anthropomorphic test devices (ATDs) can influence the outcomes of crash tests. Current procedures for positioning ATDs in rear seats are not based on systematic studies of passenger postures. This paper compares the postures of three side-impact ATDs to the postures of 24 men and women in three vehicle rear seats and 16 laboratory conditions. When positioned using current procedures, the locations of the ES-2 and SID-HIII ATD heads are generally rearward of those observed with similar-size passengers. The SID-IIs head locations matched the expected locations of heads of passengers of similar size more closely. As the seat back angle was increased, people reclined less than the ATDs. Based on these findings, a new ATD positioning procedure for rear seats was developed. The primary objective of the new procedure is to place the ATD head in the location that is most likely for people of similar size.
Technical Paper

Development of Surrogate Child Restraints for Testing Occupant Sensing and Classification Systems

2004-03-08
2004-01-0843
This paper describes the design and development of a family of surrogate child restraints that are intended for use in developing and testing occupant sensing and classification systems. Detailed measurements were made of the geometry and mass distribution characteristics of 34 commercial child restraints, including infant restraints, convertibles, combination restraints, and boosters. The restraints were installed in three test seats with appropriately sized crash dummies to obtain data on seat-surface pressure patterns and the position and orientation of the restraint with belt loading. The data were used to construct two surrogates with removable components. The convertible surrogate can be used to represent a rear-facing infant restraint with or without a base, a rear-facing convertible, or a forward-facing convertible. The booster surrogate can represent a high-back belt-positioning booster, a backless booster, or a forward-facing-only restraint with a five-point harness.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Frontal Impacts

2003-10-27
2003-22-0017
The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that “crisscrossed” the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts.
Technical Paper

Development and Testing of a Prototype Pregnant Abdomen for the Small-Female Hybrid III ATD

2001-11-01
2001-22-0003
A new prototype pregnant abdomen for the Hybrid III small-female ATD is being developed and has been evaluated in a series of component and whole-dummy tests. The new abdomen uses a fluid-filled silicone-rubber bladder to represent the human uterus at 30-weeks gestation, and incorporates anthropometry based on measurements of pregnant women in an automotive driving posture. The response of the new pregnant abdomen to rigid-bar, belt, and close-proximity airbag loading closely matches the human cadaver response, which is thought to be representative to the response of the pregnant abdomen. In the current prototype, known as MAMA-2B (Maternal Anthropomorphic Measurement Apparatus, version 2B), the risk of adverse fetal outcome is determined by measuring the peak anterior pressure within the fluid-filled bladder.
Technical Paper

Abdominal Impact Response to Rigid-Bar, Seatbelt, and Airbag Loading

2001-11-01
2001-22-0001
This study was conducted to resolve discrepancies and fill in gaps in the biomechanical impact response of the human abdomen to frontal impact loading. Three types of abdominal loading were studied: rigid-bar impacts, seatbelt loading, and close-proximity (out-of-position) airbag deployments. Eleven rigid-bar free-back tests were performed into the mid and upper abdomens of unembalmed instrumented human cadavers using nominal impact speeds of 6 and 9 m/s. Seven fixed-back rigid-bar tests were also conducted at 3, 6, and 9 m/s using one cadaver to examine the effects of body mass, spinal flexion, and repeated testing. Load-penetration corridors were developed and compared to those previously established by other researchers. Six seatbelt tests were conducted using three cadavers and a peak-loading rate of 3 m/s. The seatbelt loading tests were designed to maximize belt/abdomen interaction and were not necessarily representative of real-world crashes.
Technical Paper

Development of a Reusable, Rate-Sensitive Abdomen for the Hybrid III Family of Dummies

2001-11-01
2001-22-0002
The objective of this work was to develop a reusable, rate-sensitive dummy abdomen with abdominal injury assessment capability. The primary goal for the abdomen developed was to have good biofidelity in a variety of loading situations that might be encountered in an automotive collision. This paper presents a review of previous designs for crash dummy abdomens, a description of the development of the new abdomen, results of testing with the new abdomen and instrumentation, and suggestions for future work. The biomechanical response targets for the new abdomen were determined from tests of the mid abdomen done in a companion biomechanical study. The response of the abdominal insert is an aggregate response of the dummy’s entire abdominal area and does not address differences in upper versus lower abdominal response, solid versus hollow organs, or organ position or mobility.
X