Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Journal Article

Snow Contamination of Simplified Automotive Bluff Bodies: A Comparison Between Wind Tunnel Experiments and Numerical Modeling

2022-03-29
2022-01-0901
We describe experiments and numerical modeling of snow surface contamination on two simplified automotive bluff bodies: The Ahmed body and a wedge. The purpose was twofold: 1) To obtain well defined experimental results of snow contamination on simple geometries; 2) To propose a numerical modeling approach for snow contamination. The experiments were performed in a climatic wind tunnel using a snow cannon at −15 °C and the results show that the snow accumulation depends on the aerodynamics of the studied bluff bodies. Snow accumulates on surfaces in proximity to the aerodynamic wakes of the bodies and characteristic snow patterns are obtained on side surfaces. The numerical modeling approach consisted of an aerodynamic setup coupled with Lagrangian particle tracking. Particles were determined to adhere or rebound depending on an adhesion model combined with a resuspension criterion.
Technical Paper

Uncertainty Quantification of Flow Uniformity Measurements in a Slotted Wall Wind Tunnel

2019-04-02
2019-01-0656
The need for a more complete understanding of the flow behavior in aerodynamic wind tunnels has increased as they have become vital tools not only for vehicle development, but also for vehicle certification. One important aspect of the behavior is the empty test section flow, which in a conventional tunnel should be as uniform as possible. In order to assess the uniformity and ensure consistent behavior over time, accurate measurements need to be performed regularly. Furthermore, the uncertainties and errors of the measurements need to be minimized in order to resolve small non-uniformities. In this work, the quantification of the measurement uncertainties from the full measurement chain of the new flow uniformity measurement rig for the Volvo Cars aerodynamic wind tunnel is presented. The simulation based method used to account for flow interference of the probe mount is also discussed.
Journal Article

The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

2019-04-02
2019-01-0662
Approximately 25 % of a passenger vehicle’s aerodynamic drag comes directly or indirectly from its wheels, indicating that the rim geometry is highly relevant for increasing the vehicle’s overall energy efficiency. An extensive experimental study is presented where a parametric model of the rim design was developed, and statistical methods were employed to isolate the aerodynamic effects of certain geometric rim parameters. In addition to wind tunnel force measurements, this study employed the flowfield measurement techniques of wake surveys, wheelhouse pressure measurements, and base pressure measurements to investigate and explain the most important parameters’ effects on the flowfield. In addition, a numerical model of the vehicle with various rim geometries was developed and used to further elucidate the effects of certain geometric parameters on the flow field.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-04-05
2016-01-1606
The aerodynamic drag, fuel consumption and hence CO2 emissions, of a road vehicle depend strongly on its flow structures and the pressure drag generated. The rear end flow which is an area of complex three-dimensional flow structures, contributes to the wake development and the overall aerodynamic performance of the vehicle. This paper seeks to provide improved insight into this flow region to better inform future drag reduction strategies. Using experimental and numerical techniques, two vehicle shapes have been studied; a 30% scale model of a Volvo S60 representing a 2003MY vehicle and a full scale 2010MY S60. First the surface topology of the rear end (rear window and trunk deck) of both configurations is analysed, using paint to visualise the skin friction pattern. By means of critical points, the pattern is characterized and changes are identified studying the location and type of the occurring singularities.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Technical Paper

Wake and Unsteady Surface-Pressure Measurements on an SUV with Rear-End Extensions

2015-04-14
2015-01-1545
Previous research on both small-scale and full-scale vehicles shows that base extensions are an effective method to increase the base pressure, enhancing pressure recovery and reducing the wake size. These extensions decrease drag at zero yaw, but show an even larger improvement at small yaw angles. In this paper, rear extensions are investigated on an SUV in the Volvo Cars Aerodynamic Wind Tunnel with focus on the wake flow and on the unsteady behavior of the surface pressures near the base perimeter. To increase the effect of the extensions on the wake flow, the investigated configurations have a closed upper- and lower grille (closed-cooling) and the underbody has been smoothed with additional panels. This paper aims to analyze differences in flow characteristics on the wake of an SUV at 0° and 2.5° yaw, caused by different sets of extensions attached to the base perimeter. Extensions with several lengths are investigated with and without a kick.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Journal Article

Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars

2013-04-08
2013-01-0955
It is well known that wheels are responsible for a significant amount of the total aerodynamic drag of passenger vehicles. Tyres, and mostly rims, have been the subject of research in the automotive industry for the past years, but their effect and interaction with each other and with the car exterior is still not completely understood. This paper focuses on the use of CFD to study the effects of tyre geometry (tyre profile and tyre tread) on road vehicle aerodynamics. Whenever possible, results of the numerical computations are compared with experiments. More than sixty configurations were simulated. These simulations combined different tyre profiles, treads, rim designs and spoke orientation on two car types: a sedan and a sports wagon. Two tyre geometries were obtained directly from the tyre manufacturer, while a third geometry was obtained from our database and represents a generic tyre which covers different profiles of a given tyre size.
Journal Article

Investigation of Wheel Ventilation-Drag using a Modular Wheel Design Concept

2013-04-08
2013-01-0953
Passenger car fuel consumption is a constant concern for automotive companies and the contribution to fuel consumption from aerodynamics is well known. Several studies have been published on the aerodynamics of wheels. One area of wheel aerodynamics discussed in some of these earlier works is the so-called ventilation resistance. This study investigates ventilation resistance on a number of 17 inch rims, in the Volvo Cars Aerodynamic Wind Tunnel. The ventilation resistance was measured using a custom-built suspension with a tractive force measurement system installed in the Wheel Drive Units (WDUs). The study aims at identifying wheel design factors that have significant effect on the ventilation resistance for the investigated wheel size. The results show that it was possible to measure similar power requirements to rotate the wheels as was found in previous works.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Journal Article

Aerodynamic Effects of Different Tire Models on a Sedan Type Passenger Car

2012-04-16
2012-01-0169
Targets for reducing emissions and improving energy efficiency present the automotive industry with many challenges. Passenger cars are by far the most common means of personal transport in the developed part of the world, and energy consumption related to personal transportation is predicted to increase significantly in the coming decades. Improved aerodynamic performance of passenger cars will be one of many important areas which will occupy engineers and researchers for the foreseeable future. The significance of wheels and wheel housings is well known today, but the relative importance of the different components has still not been fully investigated. A number of investigations highlighting the importance of proper ground simulation have been published, and recently a number of studies on improved aerodynamic design of the wheel have been presented as well. This study is an investigation of aerodynamic influences of different tires.
Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

2011-09-11
2011-24-0041
This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Technical Paper

Influences of Different Front and Rear Wheel Designs on Aerodynamic Drag of a Sedan Type Passenger Car

2011-04-12
2011-01-0165
Efforts towards ever more energy efficient passenger cars have become one of the largest challenges of the automotive industry. This involves numerous different fields of engineering, and every finished model is always a compromise between different requirements. Passenger car aerodynamics is no exception; the shape of the exterior is often dictated by styling, engine bay region by packaging issues etcetera. Wheel design is also a compromise between different requirements such as aerodynamic drag and brake cooling, but as the wheels and wheel housings are responsible for up to a quarter of the overall aerodynamic drag on a modern passenger car, it is not surprising that efforts are put towards improving the wheel aerodynamics.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

Effect of Temperature Stratification on the Auto-ignition of Lean Ethanol/Air Mixture in HCCI engine

2008-06-23
2008-01-1669
It has been known from multi-zone simulations that HCCI combustion can be significantly affected by temperature stratification of the in-cylinder gas. With the same combustion timing (i.e. crank angles at 50% heat release, denoted as CA50), large temperature stratification tends to prolong the combustion duration and lower down the in-cylinder pressure-rise-rate. With low pressure-rise-rate HCCI engines can be operated at high load, therefore it is of practical importance to look into more details about how temperature stratification affects the auto-ignition process. It has been realized that multi-zone simulations can not account for the effects of spatial structures of the stratified temperature field, i.e. how the size of the hot and cold spots in the temperature field could affect the auto-ignition process. This question is investigated in the present work by large eddy simulation (LES) method which is capable of resolving the in-cylinder turbulence field in space and time.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
X