Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Experimental and Numerical Investigation of a Full-Sized Aerodynamic Vehicle Model in Relation to Its Production Car

2021-04-06
2021-01-0963
In this paper, the differences between a production car of the 2018 A-class and an early stage vehicle model with a mostly similar outer skin are examined experimentally and numerically. The aerodynamic development of vehicles at Mercedes-Benz is divided into several phases. When comparing force coefficients differences can be observed between these distinct hardware stages as well as when comparing steady state simulations to wind tunnel measurements. In early phases when prototype vehicles are not yet available, so-called aero foam models are used. These are well-defined full-sized vehicle models, as the outer skin is milled from Polyurethane. Important aerodynamic characteristics such as a motor compartment with a cooling module, deflecting axles with rotatable wheels and underbody covers are represented.
Journal Article

Experimental Investigation of the Pressure Drop during Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0202
This paper investigates the pressure drop with and without condensation inside a charge air cooler. The background to this investigation is the fact that the stored condensate in charge air coolers can be torn into the combustion chamber during different driving states. This may result in misfiring or in the worst-case lead to an engine failure. In order to prevent or reduce the accumulated condensate inside charge air coolers, a better understanding of the detailed physics of this process is required. To this end, one single channel of the charge air side is investigated in detail by using an experimental setup that was built to reproduce the operating conditions leading to condensation. First, measurements of the pressure drop without condensation are conducted and a good agreement with experimental data of a comparable heat exchanger reported in Kays and London [1] is shown.
Technical Paper

Discretization and Heat Transfer Calculation of Engine Water Jackets in 1D-Simulation

2020-04-14
2020-01-1349
The industry is working intensively on the precision of thermal management. By using complex thermal management strategies, it is possible to make engine heat distribution more accurate and dynamic, thereby increasing efficiency. Significant efforts are made to improve the cooling efficiency of the engine water jacket by using 3D CFD. As well, 1D simulation plays a significant role in the design and analysis of the cooling system, especially for considering transient behaviour of the engine. In this work, a practice-oriented universal method for creating a 1D water jacket model is presented. The focus is on the discretization strategy of 3D geometry and the calculation of heat transfer using Nusselt correlations. The basis and reference are 3D CFD simulations of the water jacket. Guidelines for the water jacket discretization are proposed. The heat transfer calculation in the 1D-templates is based on Nusselt-correlations (Nu = Nu(Re, Pr)), which are derived from 3D CFD simulations.
Technical Paper

Friction Reduction by Optimization of Local Oil Temperatures

2019-09-09
2019-24-0177
The reduction of engine-out emissions and increase of the total efficiency is a fundamental approach to reduce the fuel consumption and thus emissions of vehicles driven by combustion engines. Conventional passenger cars are operated mainly in lower part loads for most of their lifetime. Under these conditions, oil temperatures are far below the maximum temperature allowed and dominate inside the journal bearings. Therefore, the objective of this research was to investigate possible potentials of friction reduction by optimizing the combustion engine’s thermal management of the oil circuit. Within the engine investigations, it was shown that especially the friction of the main and connecting rod bearings could be reduced with an increase of the oil supply temperature. Furthermore, on a journal bearing test rig, it was shown that no excessive wear of the bearings is to be expected in case of load increase and simultaneous supply of cooler oil.
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Simulation Based Solutions for Industrial Manufacture of Large Infusion Composite Parts

2014-04-01
2014-01-0965
Today, LRI is a proven manufacturing technology for both small and large scale structures (e.g. sailboats) where, in most cases, experience and limited prototype experimentation is sufficient to get a satisfactory design. However, large scale aerospace (and other) structures require reproducible, high quality, defect free parts, with excellent mechanical performance. This requires precise control and knowledge of the preforming (draping and manufacture of the composite fabric preforms), their assembly and the resin infusion. The INFUCOMP project is a multi-disciplinary research project to develop necessary Computer Aided Engineering (CAE) tools for all stages of the LRI manufacturing process. An ambitious set of developments have been undertaken that build on existing capabilities of leading drape and infusion simulation codes available today. Currently the codes are only accurate for simple drape problems and infusion analysis of RTM parts using matched metal molds.
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

Development of an Enhanced Mean-Value-Model for Optimization of Measures of Thermal-Management

2008-04-14
2008-01-1169
In this paper, a simulation approach is introduced which takes into account all relevant heat sources and sinks in the combustion engine and in the engine compartment. With this approach, it is possible to calculate the appearing power flow and enthalpy flow as well as the component temperatures. Therefore, the complex thermodynamic and friction processes in the engine are described as simple as possible; the complete system can still be described reliably within certain limits, and the effects of different thermal optimization measures can be shown. It is an essential point for the modeling that only two integral quantities are necessary (the high pressure efficiency and the high pressure wall heat loss) for the complete combustion model.
Technical Paper

Improvement of Engine Heat-Transfer Calculation in the Three-Dimensional Simulation Using a Phenomenological Heat-Transfer Model

2001-09-24
2001-01-3601
Improvement of heat-transfer calculation for SI-engines in the three-dimensional simulation has been achieved and widely been tested by using a phenomenological heat-transfer model. The model is based on the local application of an improved Re-Nu-correlation (dimensional analysis) proposed by Bargende [1]. This approach takes advantage of long experience in engine heat transfer modeling in the real working process analysis. The results of numerous simulations of different engine meshes show that the proposed heat-transfer model enables to calculate the overall as well as the local heat transfer in good agreement with both real working process analyses and experimental investigations. The influence of the mesh structure has also been remarkably reduced and compared to the standard wall function approach, no additional CPU-time is required.
Technical Paper

Alternative Fuels for Fuel Cell Powered Buses in Comparison to Diesel powered Buses

2000-04-26
2000-01-1484
Introducing a new fuel alternative to gasoline is a very complex task. According to their short to mid term economical feasibility selected processes are modeled. Selected emissions and the primary energy demand of the production and the utilization of hydrogen and methanol as fuels for fuel cell powered buses are compared to conventional diesel powered buses. Different production routes for the alternative fuels are considered. Ecological and economical numbers are given and interpreted.
Technical Paper

Pulsating Blankholder Technology

1999-09-28
1999-01-3155
In this paper the effects of pulsating blankholder forces in deep draw processes for sheet metal parts are discussed. Areas with and without tangential compressive stresses in the flanges, which are located between the binders, are discussed separately. Areas without tangential compressive stresses can be simulated by a special friction strip-draw test using a pulsating normal force ( representing the blankholder force ). Investigations using this equipment show that by pulsating blankholder forces it is possible to avoid galling and to reduce the friction force. Areas with tangential compressive stresses can be simulated by deep drawing axissymmetric cups using a pulsating blankholder force. Investigations with this equipment show that without increasing the danger of wrinkling the friction forces can be reduced by pulsating blankholder forces, when a certain frequency limit is reached.
Technical Paper

New Machine Concept for Hydroforming Tubes and Extrusions, Part 2

1999-09-28
1999-01-3158
In cooperation with industrial companies at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart, Germany, a new press concept specially for hydroforming tubes and extrusions was developed. The press has a capacity of 3500 tons closing force and a press table size of 2500 mm × 900 mm. A great reduction in costs can be achieved by integrating spacers between the frame of the press and the ram. This paper introduces this new press.
Technical Paper

Process Modeling in the Life Cycle Design - Environmental Modeling of Joining Technologies within the Automotive Industry -

1998-11-30
982190
For integrating Life Cycle Assessment into the design process it is more and more necessary to generate models of single life cycle steps respectively manufacturing processes. For that reason it is indispensable to develop parametric processes. With such disposed processes the aim could only be to provide a tool where parametric environmental process models are available for a designer. With such a tool and the included models a designer will have the possibility to make an estimation of the probable energy consumption and needed additive materials for the applied manufacturing technology. Likewise if he has from the technical point of view the opportunity, he can shift the applied joining technology in the design phase by changing for instance the design.
Technical Paper

Thixoforming Of Aluminum

1998-02-23
980456
Thixoforming is another word for Semi-Solid-Metalforming (SSM) which means that metal will be formed between solid and liquid temperature. In this state the material behavior is thixotropic. Aluminum alloys can be formed in this thixotropic state when 30 to 40% of the material is liquid. In this case it is possible to form the aluminum in a process that is located between the die-casting and the forging technology. The thixoforming process allows it to produce Near Net Shape aluminum-parts with high quality for the automotive industry. This paper is intended to give the reader some examples about and some insights into the possible applications of the thixoforming process.
Technical Paper

Combination of Hydraulic Multipoint Cushion System and Segment-Elastic Blankholders

1998-02-01
980077
The costs for development and production of draw dies for car outer panels are extremely high and should be reduced. Furthermore it is necessary to reduce the time for developing, designing and producing the dies for the production of parts. This paper discusses new press techniques, die designs and an adjustment program for press operators. The trend goes to single action presses with CNC-controlled multipoint cushion systems in the press table and to special designed dies. These systems lead to a more robust and reproducible forming process with improved product quality. This paper deals with: Cushion Systems, New Binder Designs for Draw Dies for Sheet Metal Automotive Parts, New Computer Program to Adjust the Blankholder Forces of Modern Hydraulic Cushion Systems of Single Action Presses and Pressure Measurement for Detecting the Pressure between the Blank and the Binders of Draw Dies for Sheet Metal Automotive Parts.
Technical Paper

Pulsating Blankholder Force

1997-02-24
970987
In sheet metal stamping some industrial applications have shown that it is possible to achieve larger drawn depth by using a pulsating blankholder force. In deep drawing, areas with and without tangential stresses have to be distinguished. Areas without tangential stresses can be described by the strip drawing test. Areas with tangential stresses are described by using a deep drawing die for the production of cups which are axisymmetric. With the strip drawing test it could be shown that it is possible to reduce the increase of the friction force, caused by adhesion. Another effect is the reduction of the peak of the transition of static to dynamic friction. It was shown by experimental research, that the wrinkle height of parts, produced with pulsating blankholder force is in the range of the wrinkle height of parts produced with a constant blankholder force which is equal to the maximum force of the pulsation.
Technical Paper

Closed Loop Binder Force System

1996-02-01
960824
When drawing non-axissymmetric sheet metal parts it is necessary to control the flow of material between the lower and upper binder in such a manner that prevents the occurrence of both tears and wrinkles in the drawn part. One possibility for the control of the material flow is through the deliberate adjustment of the normal forces. If one can measure the flow-in of the material into the die cavity as a function of punch stroke with a special sensor, and if this information can be used to produce an empirical flow-in curve over the stroke for good parts, then it is possible to construct a closed- loop BHF control system. Building such control system is feasible by implementation of special dies with hydraulically supported segmented binders. This system allows an automatic response to a change in the friction conditions.
Technical Paper

Fundamental Research and Draw Die Concepts for Deep Drawing of Tailored Blanks

1995-02-01
950921
According to the present state of knowledge, the use of “Tailored Blanks” with different sheet thicknesses and/or grades represents an interesting manufacturing alternative in the design and development of sheet metal parts in the automotive industry. In order to assess the forming behavior, fundamental research was conducted on laser and mash seam welded blanks. Based on this experimental findings, a segmented draw die was designed and built to determine the limits of the metal forming process by deep drawing of car body parts. The results with this draw die showed that a uniform blankholder pressure must be guaranteed during the forming process in the flange region of the part. This necessitated definite slots in the region of the weld line for the mash seam welded blanks. Furthermore, a die concept was presented to enable an equalization of both sheet thickness steps and sheet thickness fluctuations, without requiring replacement of the respective draw die components.
Technical Paper

3-Dimensional Description of Sheet Metal Surfaces

1995-02-01
950918
During sheet metal forming processes, the friction conditions have a decisive influence on forming limits, the robustness of the production process and the quality of the parts produced, with significant forces required to overcome friction between the sheet and the tools. If lot-to-lot reproducibility is to be guaranteed, an appropriate method of characterizing the sheet surface topography is needed to monitor the sheet metal fabrication process. Newly developed optical measurement techniques and computer workstation technology are presented which enable the topography of sheet surfaces to be described in three dimensions.
Technical Paper

Simulation Program for Design of the Cooling Air Duct of Motor Cars for Optimizing the Cooling System

1994-03-01
940603
A numerical simulation program for the design of the cooling air duct and the cooling system of vehicles for stationary operating conditions is introduced. This program allows the simulation of interactions with the system environment resp. an air conditioning. Hot recirculations of air in the front part of the car and the inhomogenious flow through the heat exchangers radiator and condensor in their affects on the heat transfer capacity are simulated. The power demand of the fan, the water pump and the compressor is taken into account for calculating the heat flow from the engine into the cooling water.
X