Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

An Innovative Test System for Holistic Vehicle Dynamics Testing

2019-04-02
2019-01-0449
In the automotive industry, there is a continued need to improve the development process and handle the increasing complexity of the overall vehicle system. One major step in this process is a comprehensive and complementary approach to both simulation and testing. Knowledge of the overall dynamic vehicle behavior is becoming increasingly important for the development of new control concepts such as integrated vehicle dynamics control aiming to improve handling quality and ride comfort. However, with current well-established test systems, only separated and isolated aspects of vehicle dynamics can be evaluated. To address these challenges and further merge the link between simulation and testing, the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart is introducing a new Handling Roadway (HRW) Test System in cooperation with The Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) and MTS Systems Corporation.
Technical Paper

How to Model Real-World Driving Behavior? Probability-Based Driver Model for Energy Analyses

2019-04-02
2019-01-0511
A wide variety of applications such as driver assistant and energy management systems are researched and developed in virtual test environments. The safe testing of the applications in early stages is based on parameterizable and reproducible simulations of different driving scenarios. One possibility is modeling the microscopic driving behavior to simulate the longitudinal vehicle dynamics of individual vehicles. The currently used driver models are characterized by a conflict regarding comprehensibility, accuracy and calibration effort. Due to the importance for further analyses this conflict of interests is addressed by the presentation of a new microscopic driver model in this paper. The proposed driver model stores measured driving behaviors with its statistical distributions in maps. Thereby, the driving task is divided into free flow, braking in front of stops and following vehicles ahead. This makes it possible to display the driving behavior in its entirety.
Journal Article

New Motion Cueing Algorithm for Improved Evaluation of Vehicle Dynamics on a Driving Simulator

2017-03-28
2017-01-1566
In recent years, driving simulators have become a valuable tool in the automotive design and testing process. Yet, in the field of vehicle dynamics, most decisions are still based on test drives in real cars. One reason for this situation can be found in the fact that many driving simulators do not allow the driver to evaluate the handling qualities of a simulated vehicle. In a driving simulator, the motion cueing algorithm tries to represent the vehicle motion within the constrained motion envelope of the motion platform. By nature, this process leads to so called false cues where the motion of the platform is not in phase or moving in a different direction with respect to the vehicle motion. In a driving simulator with classical filter-based motion cueing, false cues make it considerably more difficult for the driver to rate vehicle dynamics.
Technical Paper

Powernet Simulation as a Tool for the Development of a Highly Reliable Energy Supply for Safety Relevant Control Systems in X-By-Wire Vessels in the EU SPARC Project

2006-04-03
2006-01-0115
The EU SPARC Project (Secure Propelled Vehicle with Advanced Redundant Control) has developed a new system architecture that enables effective application of driver assisted systems in an X-by-wire powertrain. A major challenge in the conception of such a system is development of a reliable electrical energy supply. A simulation is the most important tool for enabling the fundamental aspects to work, as for example, a dimensioning of the powernet. This article explains our approach in this SPARC simulation. We provide suggestions through examples of how to find simulation solutions for powernet dimensioning, as well as for the conception and validation of energy management strategies.
Technical Paper

Fast EMC Emission Measurements in Time Domain

2004-03-08
2004-01-1705
EMC Emission Measurements are usually carried out in frequency domain with measuring receivers and spectrum analyzers in frequency domain. The advantage is the sensitivity of the measurement by pre-selecting the input signal. The time consumption of such a frequency scan is significant high. Modern oscilloscopes cover the needed frequency range and with additional signal processing the sensitivity can be significant improved. Therefore modern time domain EMC emission techniques are a time and cost effective alternative to traditional frequency range measurement. Further more the “real” signal is being monitored which allows the design engineer to trace the source of the emission much better than with frequency range methods.
Technical Paper

Development of High Speed Spectroscopic Imaging Techniques for the Time Resolved Study of Spark Ignition Phenomena

2000-10-16
2000-01-2833
This paper reports on the development of novel time resolved spectroscopic imaging techniques for the study of spark ignition phenomena in combustion cells and an SI-engine. The techniques are based on planar laser induced fluorescence imaging (PLIF) of OH radicals, on fuel tracer PLIF, and on chemiluminescence. The techniques could be achieved at repetition rates reaching several hundreds of kilo-Hz and were cycle resolved. These techniques offer a new path along which engine related diagnostics can be undertaken, providing a wealth of information on turbulent spark ignition.
Technical Paper

LCA Based Design for Environment in the Automotive Industry

2000-04-26
2000-01-1517
Life cycle assessment offers a suitable methodology to evaluate environmental impacts over the total life cycle of the car. Indeed the effort for LCA studies of complex products like cars is very high. Design for environment tools can help to reduce the effort for environmental evaluation because of their direct integration in the designers workflow. As DFE is not standardized, it should be based on the reliable data from LCA. A connection between LCA and DFE offers the possibility to integrate environmental evaluation with tolerable effort directly in the design process while keeping the transparency and reliability of LCA.
Technical Paper

Pulsating Blankholder Technology

1999-09-28
1999-01-3155
In this paper the effects of pulsating blankholder forces in deep draw processes for sheet metal parts are discussed. Areas with and without tangential compressive stresses in the flanges, which are located between the binders, are discussed separately. Areas without tangential compressive stresses can be simulated by a special friction strip-draw test using a pulsating normal force ( representing the blankholder force ). Investigations using this equipment show that by pulsating blankholder forces it is possible to avoid galling and to reduce the friction force. Areas with tangential compressive stresses can be simulated by deep drawing axissymmetric cups using a pulsating blankholder force. Investigations with this equipment show that without increasing the danger of wrinkling the friction forces can be reduced by pulsating blankholder forces, when a certain frequency limit is reached.
Technical Paper

Rapid CFD Simulation of Internal Combustion Engines

1999-03-01
1999-01-1185
Multi-dimensional modelling of the flow and combustion promises to become a useful optimisation tool for IC engine design. Currently, the total simulation time for an engine cycle is measured in weeks to months, thus preventing the routine use of CFD in the design process. Here, we shall describe three tools aimed at reducing the simulation time to less than a week. The rapid template-based mesher produces the computational mesh within 1-2 days. The parallel flow solver STAR-CD performs the flow simulation on a similar time-scale. The package is completed with COVISEMP, a parallel post-processor which allows real-time interaction with the data.
Technical Paper

Life Cycle Engineering a Powerful Tool for Product Improvement

1998-11-30
982172
The Institute for Polymer Testing and Polymer Science of the University of Stuttgart has been investigating automotive parts, structures and cars during their life cycle in plenty cooperation with the European automobile producers and their suppliers for the last 9 years. Therefore a holistic approach has been developed to combine tasks from technique, economic and environment in a methodology called Life Cycle Engineering (LCE). The goal is to find a way to support designer and engineers as well as police makers and public with this three-dimensional interrelated information to have the possibility to manufacture future products in a more sustainable way without loosing contact two the traditional parameters technique and costs.
Technical Paper

3-Dimensional Description of Sheet Metal Surfaces

1995-02-01
950918
During sheet metal forming processes, the friction conditions have a decisive influence on forming limits, the robustness of the production process and the quality of the parts produced, with significant forces required to overcome friction between the sheet and the tools. If lot-to-lot reproducibility is to be guaranteed, an appropriate method of characterizing the sheet surface topography is needed to monitor the sheet metal fabrication process. Newly developed optical measurement techniques and computer workstation technology are presented which enable the topography of sheet surfaces to be described in three dimensions.
X