Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Art Meets Automotive: Design of a Curve-Adaptive Origami Gripper for Handling Textiles on Non-Planar Mold Surfaces

2024-04-09
2024-01-2575
The handling of flexible components creates a unique problem set for pick and place automation within automotive production processes. Fabrics and woven textiles are examples of flexible components used in car interiors, for air bags, as liners and in carbon-fiber layups. These textiles differ greatly in geometry, featuring complex shapes and internal slits with varying material properties such as drape characteristics, crimp resistance, friction, and fiber weave. Being inherently flexible and deformable makes these materials difficult to handle with traditional rigid grippers. Current solutions employ adhesive, needle-based, and suction strategies, yet these systems prove a higher risk of leaving residue on the material, damaging the weave, or requiring complex assemblies. Pincer-style grippers are suitable for rigid components and offer strong gripping forces, yet inadvertently may damage the fabric, and introduce wrinkles / folded-over edges during the release process.
Journal Article

Experimental Investigation of Axial Cutting of AA6061 Extrusions under a Tension Deformation Mode

2020-04-14
2020-01-0206
A plethora of applications in the transportation industry for both vehicular and roadside safety hardware, especially seatbelts, harnesses and restraints, rely on tensile loading to dissipate energy and minimize injury. There are disadvantages to the current state-of-the-art for these tensile energy absorbers, including erratic force-displacement responses and low tensile force efficiencies (TFE). Axial cutting was extensively demonstrated by researchers at the University of Windsor to maintain a stable reaction force, although exclusively under compressive loading. A novel apparatus was investigated in this study which utilized axial cutting under a tensile loading condition to absorb energy. A parametric scope was chosen to include circular AA6061 extrusions in both T4 and T6 temper conditions with an outer diameter of 63.5 mm and wall thickness of 3.18 mm.
Technical Paper

A Novel Hybrid Technique for Thermal Analysis of Permanent Magnet Synchronous Motor Used in Electric Vehicle Application

2020-04-14
2020-01-0464
Due to high torque and power density, permanent magnet synchronous motor (PMSM) has become the most viable candidate for electric vehicle (EV) traction application. However, to obtain such high torque and power density within a compact motor structure can cause a significant temperature rise within the motor while operating. As a result of high temperature rise, permanent magnet demagnetization may even occur within the motor. Thus, PMSM is susceptible to thermal instability. Therefore, to ensure thermal stability during varying operating conditions, thermal analysis is a mandatory procedure in addition to electromagnetic analysis during the design phase of the motor. In this paper, a computationally efficient numerical finite element analysis (FEA) process has been proposed for thermal analysis of PMSM.
Technical Paper

A Comparison of the Mechanical Performance of AA6061-T6 Extrusions Subjected to Axial Crushing and Axial Cutting

2019-04-02
2019-01-1094
Conventional axially loaded energy absorbers dissipate kinetic energy through progressive folding. The significant fluctuations in load and high risk of transition to global bending are drawbacks that engineers have attempted to mitigate through several methods. A novel energy dissipation mechanism, referred to as axial cutting, utilizes thin-walled extrusions and a strengthened cutting tool to absorb energy in an axial impact. Compared to progressive folding, this can be achieved with minimal fluctuations in load during the deformation process. Based upon estimates from finite element models, a series of test cases were postulated where, for 8 and 10-bladed cutting scenarios, greater total energy absorption could be achieved through axial cutting than with progressive folding of geometrically similar extrusions. The specimens were AA6061 extrusions having T6 temper conditions that possessed 63.5 mm outer diameters and 1.5 mm wall thicknesses.
Technical Paper

A Hardness Study on Laser Cladded Surfaces for a Selected Bead Overlap Conditions

2017-03-28
2017-01-0285
Laser cladding is used to coat a surface of a metal to enhance the metallurgical properties at the surface level of a substrate. For surface cladding operations, overlapping bead geometry is required. Single bead analyses do not provide a complete representation of essential properties; hence, this research focuses on overlapping conditions. The research scope targets the coaxial laser cladding process specifically for P420 stainless steel clad powder using a fiber optic laser with a 4.3 mm spot size on a low/medium carbon structural steel plate (AISI 1018). Many process parameters influence the bead geometrical shape, and it is assumed that the complex temperature distributions within the process could cause subsequent large variations in hardness values. The bead overlap configurations experiments are performed with 40%, 50% and 60% bead overlaps for a three-pass bead formation.
Technical Paper

Investigating Process Parameters and Microhardness Predictive Modeling Approaches for Single Bead 420 Stainless Steel Laser Cladding

2017-03-28
2017-01-0283
Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
Technical Paper

Modular Design and Methods to Optimize Seat Complete Assemblies

2017-03-28
2017-01-1309
Modularity in product architecture and its significance in product development have become an important product design topics in the last few decades. Several Product Modularity definitions and methodologies were developed by many researchers; however, most of the definitions and concepts have proliferated to the extent that it is difficult to apply one universal definition for modular product architecture and in product development. Automotive seat modular strategy and key factors for consideration towards modular seat design and assemblies are the main focus of this work. The primary objectives are focused on the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
Technical Paper

A Neural Network Approach for Predicting Collision Severity

2014-04-01
2014-01-0569
The development of a collision severity model can serve as an important tool in understanding the requirements for devising countermeasures to improve occupant safety and traffic safety. Collision type, weather conditions, and driver intoxication are some of the factors that may influence motor vehicle collisions. The objective of this study is to use artificial neural networks (ANNs) to identify the major determinants or contributors to fatal collisions based on various driver, vehicle, and environment characteristics obtained from collision data from Transport Canada. The developed model will have the capability to predict similar collision outcomes based on the variables analyzed in this study. A multilayer perceptron (MLP) neural network model with feed-forward back-propagation architecture is used to develop a generalized model for predicting collision severity. The model output, collision severity, is divided into three categories - fatal, injury, and property damage only.
Technical Paper

Power Management Methodologies for Fuel Cell-Battery Hybrid Vehicles

2010-04-12
2010-01-0849
The implementation of fuel cell-battery hybrid vehicles requires a supervisory control strategy that manages the power distribution between the fuel cell and the energy storage device (i.e., battery). Several advanced control methods have already been developed and published in literature. However, most control methods have been developed for different vehicle types and using different mathematical models. The performance of these power management methods have not been directly compared for the same application. This study aims at obtaining direct analytical comparisons, which will provide useful insight in selecting a power management method for fuel cell-battery hybrid vehicles.
Technical Paper

Implementation of Child Biomechanical Neck Behaviour into a Child FE Model

2009-04-20
2009-01-0472
This research focuses on the further development of a child finite element model whereby implementation of pediatric cadaver testing observations considering the biomechanical response of the neck of children under tensile and bending loading has occurred. Prior to this investigation, the biomechanical neck response was based upon scaled adult cadaver behaviour. Alterations to the material properties associated with ligaments, intervertebral discs and facet joints of the pediatric cervical spine were considered. No alteration to the geometry of the child neck finite element model was considered. An energy based approach was utilized to provide indication on the appropriate changes to local neck biomechanical characteristics. Prior to this study, the biomechanical response of the neck of the child finite element model deviated significantly from the tensile and bending cadaver tests completed by Ouyang et al.
Technical Paper

Jack Stands in North American Rally - A Design Proposal

2008-12-02
2008-01-2970
Rally cars are among the most technologically advanced and complex race cars, with intercooled forced induction, adaptive all wheel drive and high-feature engine management being standard features for open class racers in all major North American Rally series. This high level of technology and complexity places additional burden on the service crews and mechanics charged with the task of preparing and repairing the vehicles during the competition. As such, it is of great importance that the brief service stops (thirty minutes per FIA regulation 17.2.2 [2008]) be executed as efficiently as possible. In the pursuit of valuable seconds, rally mechanics have shown a great deal of ingenuity, creating tools and procedures which are unique to the sport. One such innovation is the peg-style jack stand.
Journal Article

Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy

2008-04-14
2008-01-1120
This research focuses on comparing the biomechanical response of the head and neck of the Hybrid III 3-year-old anthropometric test device finite element model and pediatric cadaver data, under flexion-extension bending and axial tensile loading conditions. Previous experimental research characterized the quasi-static biomechanical response of the pediatric cervical spine under flexion-extension bending and tolerance in tensile distraction loading conditions. Significant differences in rotational and linear stiffness were found between the Hybrid III model and the pediatric cadaver data. In this research the biomechanical child cadaver neck response has been implemented into the 3-year-old Hybrid III child dummy FE model. An explicit finite element code (LS-DYNA) and the modified Hybrid III model were used to numerically simulate the previous cadaver tests and validate the altered Hybrid III neck.
Technical Paper

Responses of the Q3, Hybrid III and a Three Year Old Child Finite Element Model Under a Simulated 213 Test

2008-04-14
2008-01-1121
This research focuses on the response of the Q3, Hybrid III 3-year-old dummy and a child finite element model in a simulated 213 sled test. The Q3 and Hybrid III 3-year old child finite element models were developed by First Technology Safety Systems. The 3-year-old child finite element model was developed by Nagoya University by model-based scaling from the AM50 (50 percentile male) total human model for safety. The child models were positioned in a forward facing, five-point child restraint system using Finite Element Model Builder. An acceleration pulse acquired from an experimental 213 sled test, which was completed following the guidelines outlined in the Federal Motor Vehicle Safety Standard 213 using a Hybrid III 3-year-old dummy, was applied to the seat buck supporting the child restraint seat. The numerical simulations utilizing the Q3, Hybrid III 3-year-old and the child finite element model were conducted using the explicit non-linear finite element code LS-DYNA.
Technical Paper

Roof Strength Requirement for Vehicles Involved in Rollover Crash

2008-04-14
2008-01-0510
Rollover crash is one of the most serious safety problems for light weight vehicles. In the USA, rollover crashes account for almost one-third of all occupant fatalities in light weight vehicles. Similar statistics are found for other countries. Thus, rollover crashes have received significant attention in recent years. In the USA and Canada, automotive manufacturers are required to comply with the roof strength requirement of “1.5 times the unloaded vehicle weight” to ensure safety in rollover. NHTSA is currently considering a set of countermeasures to improve the rollover safety, where one of the proposals is to increase the roof strength limit to “2.5 times the unloaded vehicle weight”. This increased roof strength limit seemingly has been motivated based on the benchmark study of current vehicle fleet.
Technical Paper

Use of Rigid and Deformable Child Restraint Seats in Finite Element Simulations of Frontal Crashes

2006-04-03
2006-01-1141
This research focuses on the injury potential of children seated in forward facing child restraint seats during frontal vehicle crashes. Experimental sled tests were completed in accordance to the Federal Motor Vehicle Safety Standard 213 using a Hybrid III three-year-old dummy in a five point child restraint system. A full vehicle crash test was completed in accordance to the Canadian Motor Vehicle Safety Standard 208 with the addition of a three-year-old Hybrid III crash test dummy, seated behind the passenger seat, restrained in the identical five-point child safety seat. Different child restraint finite element models were developed incorporating a subset of the apparatus used in the two experimental tests and simulated using LS-DYNA.
Technical Paper

Laser Welding of Elastomers to Polypropylene

2003-03-03
2003-01-1134
The effects of varying laser-welding parameters were studied for the welding of the thermoplastic elastomer EPDM to glass filled polypropylene. Through-thickness scanning transmission welding (contour welding) was carried out with a diode laser with a wavelength of 940 nm using various power levels up to 150W and line speeds up to 2500 mm/minute. The observable weld attributes: weld strengths, weld widths, and failure modes, have been tabulated and discussed.
Technical Paper

Observations of the Relative Performance of Magnesium and Aluminum Steering Wheel Skeletons with Identical Geometry

2000-03-06
2000-01-0784
Automotive steering wheels depend on a structural skeleton made of steel, aluminum, or magnesium to be the basis for the mechanical properties of the finished part. The mechanical properties of concern are the fatigue properties and the crash performance. The purpose of this study was to evaluate the crash and the fatigue performance of a steering wheel skeleton fabricated by high pressure die casting. Two materials were used to produce two groups of wheels with identical geometry. The production part was designed, optimized and fabricated with AM50A magnesium. The production magnesium component met all of the regulatory design and performance requirements. A small sample run was made in a proprietary aluminum - magnesium alloy. The fatigue and crash properties were evaluated empirically. In fatigue testing, the aluminum skeletons displayed a significant improvement, with respect to the magnesium skeletons, in the number of cycles to failure at the loads tested.
X