Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

LCA and LCC of a Li-ion Battery Pack for Automotive Application

2023-08-28
2023-24-0170
Lithium Ion (Li-ion) batteries have emerged as the dominant technology for electric mobility due to their performance, stability, and long cycle life. Nevertheless, there are emerging environmental and economic issues from Li-ion batteries related to depleting critical resources and their potential shortage. This paper focuses on developing the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) of a generic Li-ion battery pack with a Nickel-Manganese-Cobalt (NMC) cathode chemistry, being the most used, and a capacity of 95 kWh as an average between different carmakers. The LCA and LCC include all the relevant phases of the life cycle of the product. The costs related to the LCC assessment have been taken as secondary data. Lastly, the same system boundary has been chosen both for the LCA and LCC.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Technical Paper

Electrochemical Analysis of High Capacity Li-Ion Pouch Cell for Automotive Applications

2021-04-06
2021-01-0760
Major original equipment manufacturers (OEMs) have already marketed electric vehicles in large scale but apart from business strategies and policies, the real engineering problems must be addressed. Lithium-ion batteries are a promising technology for energy storage; however, their low energy density and complex electro-chemical nature, compared to fossil fuels, presents additional challenges. Their complex nature and strong temperature dependence during operation must be studied with additional accuracy, capable to predict their behavior. In this research, a pseudo two dimensional (P2D) electro-chemical model, for a recent high capacity NMC pouch cell for automotive applications is developed. The electrochemical model with its temperature dependent parameters is validated at high, low, and reference temperature within 10°C to 50°C temperature range. For each temperature various discharge C-rates to accurately replicate the battery cell operational conditions.
Technical Paper

High Energy Ignition Strategies for Diluted Mixtures via a Three-Pole Igniter

2016-10-17
2016-01-2175
A three-pole spark igniter, with the concept to broaden the ignition area, is employed in this paper to investigate the effect of spark discharge strategies on the early ignition burning process. The prototyped three-pole igniter has three independent spark gaps arranged in a triangular pattern with a circumradius of 2.3 mm. Direct-capacitor discharge techniques, utilizing close-coupled capacitors parallel to the spark gap, are applied on the three-pole igniter to enhance either the transient spark power or the overall energy. In particular, the simultaneous discharge of high energy plasma on three spark gaps can produce a surface-like ignition process which intensifies the plasma-flame interaction, thereby producing a rapid flame kernel development. The ignition strategies are evaluated in both constant volume combustion vessels and a modified single-cylinder metal engine.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Technical Paper

Numerical Investigation of Active and Passive Cooling Systems of a Lithium-Ion Battery Module for Electric Vehicles

2016-04-05
2016-01-0655
In this work, a pseudo three-dimensional coupled thermal-electrochemical model is established to estimate the heat generation and temperature profiles of a lithium ion battery as functions of the state of the discharge. Then, this model is used to investigate the effectiveness of active and passive thermal management systems. The active cooling system utilizes cooling plate and water as the working fluid while the passive cooling system incorporates a phase change material (PCM). The thermal effects of coolant flow rate examined using a computational fluid dynamics model. In the passive cooling system, Paraffin wax used as a heat dissipation source to control battery temperature rise. The effect of module size and battery spacing is studied to find the optimal weight of PCM required. The results show that although the active cooling system has the capability to reduce the peak temperatures, it leads to a large temperature difference over the battery module.
Technical Paper

Transient Response of Minichannel Heat Exchanger Using Al2O3-EG/W Nanofluid

2016-04-05
2016-01-0229
A numerical study is performed to investigate the transient heat transfer and flow characteristics of aluminum oxide (Al2O3) nanoparticles dispersed in 50:50 ethylene glycol/water (EG/W) base fluid in a multipass crossflow minichannel heat exchanger. The time dependent thermal responses of the system in a laminar regime are predicted by solving the conservation equations using the finite volume method and SIMPLE algorithm. The transient regime is caused by a step change of nanofluid mass flow rate at the inlet of the minichannel heat exchanger. This step change can be analogous with a thermostat operation. In this study, three volume fractions up to 3 percent of Al2O3 nanoparticles dispersed to the base fluid EG/W are modeled and analyzed. In the numerical simulation, Al2O3-EG/W nanofluid is considered as a homogenous single-phase fluid. An analysis of the transient response for the variation of nanofluids volume concentrations is conducted.
Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Technical Paper

The Band Importance Function in the Evaluation of the Speech Intelligibility Index at the Speech Reception Threshold within a Simulated Driving Environment

2013-05-13
2013-01-1953
This study provides an overview of a novel method for evaluating in-vehicle speech intelligibility using the Speech Intelligibility Index (SII). The approach presented is based on a measured speech signal evaluated at the sentence Speech Reception Threshold (sSRT) in a simulated driving environment. In this context, the impact of different band importance functions in the evaluation of the SII using the Hearing in Noise Test (HINT) in a driving simulator is investigated.
Technical Paper

Engine Fault Detection Using Vibration Signal Reconstruction in the Crank-Angle Domain

2011-05-17
2011-01-1660
Advanced engine test methods incorporate several different sensing and signal processing techniques for identifying and locating manufacturing or assembly defects of an engine. A successful engine test method therefore, requires advanced signal processing techniques. This paper introduces a novel signal processing technique to successfully detect a faulty internal combustion engine in a quantitative manner. Accelerometers are mounted on the cylinder head and lug surfaces while vibration signals are recorded during engine operation. Using the engine's cam angular position, the vibration signals are transformed from the time domain to the crank-angle domain. At the heart of the transformation lies interpolation. In this paper, linear, cubic spline and sinc interpolation methods are demonstrated for reconstructing vibration signals in the crank-angle domain.
Technical Paper

Power Management Methodologies for Fuel Cell-Battery Hybrid Vehicles

2010-04-12
2010-01-0849
The implementation of fuel cell-battery hybrid vehicles requires a supervisory control strategy that manages the power distribution between the fuel cell and the energy storage device (i.e., battery). Several advanced control methods have already been developed and published in literature. However, most control methods have been developed for different vehicle types and using different mathematical models. The performance of these power management methods have not been directly compared for the same application. This study aims at obtaining direct analytical comparisons, which will provide useful insight in selecting a power management method for fuel cell-battery hybrid vehicles.
Journal Article

Development of an Advanced Driver Model and Simulation Environment for Automotive Racing

2009-04-20
2009-01-0434
The paper describes a closed-loop vehicle simulation environment developed to support a virtual vehicle design and testing methodology, proposed for the University of Windsor Formula SAE team. Virtual prototyping and testing were achieved through co-simulation of Matlab/Simulink® and Carsim®. The development of the required hybrid-control driver and vehicle models are described. The proposed models were validated with in vehicle test data. The proposed methods have shown to be effective and robust in predicting driver response, while controlling the vehicle within the developed simulation environment.
Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Technical Paper

Variable Torque Distribution Yaw Moment Control for Hybrid Powertrains

2007-04-16
2007-01-0278
This paper proposes and evaluates the use of a robust variable torque distribution (VTD) yaw moment control for an all wheel drive (AWD) hybrid vehicle prototype currently under development. The proposed VTD controller was used to improve the linearity of vehicle response to driver input through the modulation of front-to-rear torque distribution and a corrective torque differential between the left and right rear wheels. The development of a non-linear vehicle model and a reference model tracking sliding mode based control are discussed. The efficacy of the proposed control system was demonstrated through the use of numerical simulations using the developed non-linear vehicle model. The simulation results presented indicate the effectiveness of the proposed system and the potential restrictions to such a system including tire saturation and drivetrain component limitations.
Technical Paper

Energy Efficiency Analysis between In-cylinder and External Supplemental Fuel Strategies

2007-04-16
2007-01-1125
Preliminary empirical and modeling analyses are conducted to evaluate the energy efficiency of in-cylinder and external fuel injection strategies and their impact on the energy required to enable diesel particulate filter (DPF) regeneration for instance. During the tests, a thermal wave that is generated from the engine propagates along the exhaust pipe to the DPF substrate. The thermal response of the exhaust system is recorded with the thermocouple arrays embedded in the exhaust system. To implement the external fuel injection, an array of thermocouples and pressure sensors in the DPF provide the necessary feedback to the control system. The external fuel injection is dynamically adjusted based on the thermal response of the DPF substrate to improve the thermal management and to reduce the supplemental energy. This research intends to quantify the effectiveness of the supplemental energy utilization on aftertreatment enabling.
Technical Paper

Control-Oriented Model for Electric Power Steering System

2006-04-03
2006-01-0938
Electric power steering (EPS) systems have been used to replace hydraulic power steering systems in vehicles. How to enhance the safety and reliability while reducing the manufacturing cost of EPS systems is still of strong interest to the automotive industry. In this paper, modeling analysis is conducted for advanced control of electric power steering system. Specifically, a mathematical model is proposed for a column-mounted EPS system and then a simplified model for control design purpose is proposed. Issues that need to be addressed, such as noise/ disturbance attenuation as well as potential fault detection/tolerance are analyzed. Simulation using CarSim™ is also presented for an optimal control design using the simplified model as an example to validate the proposed ideas.
Technical Paper

Performance of Stirling Engine Hybrid Electric Vehicles: A Simulation Approach

2001-08-20
2001-01-2513
Hybrid Vehicles have gained momentum in the automotive industry. The joint action of power sources and energy storage systems for energizing the vehicle improves the vehicle's fuel economy while reducing its pollutant emissions and noise levels, challenging automotive designers to optimize vehicle's cost, weight and control. The marketing success of hybrid vehicles significantly depends on the selection, integration and cost of the energy systems. The internal combustion engine, dominant of the vehicle market, has been the “option of choice” for auxiliary power unit of the hybrid vehicle, although other power sources as fuel cells, Stirling engines and gas turbines have been employed as well [1]. This document is focused in the application of Stirling engines as the power source for automobile propulsion.
Technical Paper

The University of Windsor - St. Clair College E85 Silverado

2001-03-05
2001-01-0680
The fuel called E-85 can be burned effectively in engines similar to the engines currently mass-produced for use with gasoline. Since the ethanol component of this fuel is produced from crops such as corn and sugar cane, the fuel is almost fully renewable. The different physical and chemical properties of E-85, however, do require certain modifications to the common gasoline engine. The Windsor - St. Clair team has focused their attention to modifications that will improve fuel efficiency and reduce tailpipe emissions. Other modifications were also performed to ensure that the vehicle would still operate with the same power and driveability as its gasoline counterpart.
X