Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion

2017-03-28
2017-01-0773
Engine experiments were conducted on a heavy-duty single-cylinder engine to explore the effects of charge preparation, fuel stratification, and premixed fuel chemistry on the performance and emissions of Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted at a fixed total fuel energy and engine speed, and charge preparation was varied by adjusting the global equivalence ratio between 0.28 and 0.35 at intake temperatures of 40°C and 60°C. With a premixed injection of isooctane (PRF100), and a single direct-injection of n-heptane (PRF0), fuel stratification was varied with start of injection (SOI) timing. Combustion phasing advanced as SOI was retarded between -140° and -35°, then retarded as injection timing was further retarded, indicating a potential shift in combustion regime. Peak gross efficiency was achieved between -60° and -45° SOI, and NOx emissions increased as SOI was retarded beyond -40°, peaking around -25° SOI.
Journal Article

Exploring the Role of Reactivity Gradients in Direct Dual Fuel Stratification

2016-04-05
2016-01-0774
Low-temperature combustion (LTC) strategies have been an active area of research due to their ability to achieve high thermal efficiency while avoiding the formation of NOx and particulate matter. One of the largest challenges with LTC is the relative lack of authority over the heat release rate profile, which, depending on the particular injection strategy, either limits the maximum attainable load, or creates a tradeoff between noise and efficiency at high load conditions. We have shown previously that control over heat release can be dramatically improved through a combination of reactivity stratification in the premixed charge and a diffusion-limited injection that occurs after the conclusion of the low-temperature heat release, in a strategy called direct dual fuel stratification (DDFS).
X