Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Reaction of Ethane in Spark Ignition Engine Exhaust Gas

1970-02-01
700471
This paper describes a method for studying reactions of hydrocarbons in S.I. engine exhaust gases. The reaction of ethane is described using an Arrhenius model (experimentally E = 86,500 cal/mole) for the rate of ethane diappearance and empirical correlations for distributions of the products carbon monoxide, ethylene, formaldehyde, methane, acetylene, and propane as a function of the fraction of ethane reacted. The results show that the nature of partial oxidation products from a nonreactive hydrocarbon may be less desirable from an air pollution viewpoint than the initial hydrocarbon.
Technical Paper

Spark Ignition Engine Operation and Design for Minimum Exhaust Emission

1966-02-01
660405
The purpose of the tests conducted on a single-cylinder laboratory engine was to determine the mechanism of combustion that affect exhaust emissions and the relationship of those mechanisms to engine design and operating variables. For the engine used in this study, the exhaust emissions were found to have the following dependence on various engine variables. Hydrocarbon emission was reduced by lean operation, increased manifold pressure, retarded spark, increased exhaust temperature, increased coolant temperature, increased exhaust back pressure, and decreased compression ratio. Carbon monoxide emission was affected by air-fuel ratio and premixing the charge. Oxides of nitrogen (NO + NO2 is called NOx) emission is primarily a function of the O2 available and the peak temperature attained during the cycle. Decreased manifold pressure and retarded spark decrease NOx emission. Hydrocarbons were found to react to some extent in the exhaust port and exhaust system.
Technical Paper

End-Gas Temperatures, Pressures, Reaction Rates, and Knock

1965-02-01
650505
The infrared radiation method of compression and end-gas temperature measurement was applied to the problem of measuring gas temperatures up to the time of knock. Pressure data were taken for each run on a CFR engine with mixtures of isooctane and n-heptane under both knocking and nonknocking conditions. Main engine parameters studied were the intake pressure, intake temperature, and engine speed. The rate and extent of chemical energy release were calculated from the temperature and pressure histories using an energy balance. The computed rates of chemical energy release were correlated to a chain-type kinetic model
X