Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Study of NaCl Corrosion Behavior on SiC-Reinforced in Al 6061 and Al 5052 Metal Matrix Composites Using Taguchi’s Technique

2022-12-23
2022-28-0531
The present research investigates the corrosion behavior of aluminum metal matrix composites (AMMCs) in NaCl solution. The test was designed and performed based on Taguchi’s L8 orthogonal array. The stir casting technique fabricates the AMMCs, and silicon carbide (SiC) is individually reinforced in Al 6061 and Al 5052 matrix. The SiC particle are reinforced in a matrix with 5% and 10% separately in Al 6061 and Al 5052. The test variables used during corrosion studies were reinforced Al matrix, wt% of SiC, molar solution, and corrosion duration for stir-casted composite samples. The Al 6061 and Al 5052 composites were tested in 1M and 2M molar NaCl solutions for 15 and 30 days exposure duration. According to ASTM G31, the solution immersion tests were carried out. The corrosion surfaces are examined by optical microscope and field emission scanning electron microscopy (FESEM) equipment. Through microstructure, it is noted that the corrosion concentration is along the grain boundaries.
Technical Paper

Investigation of Natural Fiber Composite in EMI Shielding under the Influence of Hematite and Rice Husk Ash Filler

2022-12-23
2022-28-0588
The increased use of electronic systems has become a severe concern for electromagnetic pollution, leading to the development of materials to reduce electromagnetic interference (EMI). The present study investigated the EMI-shielding effectiveness (EMI-SE) of flax fiber polymer composite (FFC) in the available free space method by varying the wt.% of Rice husk ash (RHA) and hematite. The flax fiber was coated with the dip coating technique, and the coated fibers were used for preparing FFC by hand layup. The EMI-SE was measured at 32-33.5 dB in the X-band frequency range (8-12 GHz). As the cost is low and can be mass-produced, results show that the developed FFC are suitable for electric vehicle applications specifically to shield Electronic control units (ECU), where the interference effect needs to be reduced.
Journal Article

Effect of Al2TiO5 Particulates on the Microstructural and Mechanical Characteristics of AA5052 Composites

2022-12-23
2022-28-0545
Aluminum-based metal matrix composites are continuously changing to meet the industry’s specialized needs. In the aluminum alloy series, the AA5052 had a lightweight, high strength, good weldability, excellent corrosion resistance, and a good surface finish during the machining operation. The present work is to improve the mechanical characterization of AA5052 by adding 1 and 2 wt % of Aluminium Titanate (Al2TiO5) reinforcement particles through a stir casting process. The influences of Al2TiO5 reinforcement particle’s microstructural analysis were investigated. The tensile, impact and hardness of the AA5052/ Al2TiO5 composites were also determined by Universal Testing Machine (UTM), Charpy, and Vickers microhardness tester, respectively. The AA5052/ 2%- Al2TiO5 composite microstructure shows a uniform grain distribution. The increased wt 2 % of reinforced particles to AA5052 resulted in an improved microhardness (73.4 HV) and tensile strength (210.28 Mpa).
Technical Paper

Mechanical Studies on Polycaprolactone Based Green Composite

2021-10-01
2021-28-0242
In the last decade, there was growing interest in the use of green composites because of their environment-friendly nature, improvement in mechanical & chemical properties, better processability, and low cost. In this work, short sisal fiber was reinforced in a polycaprolactone (PCL) matrix and four different degradable green composites were developed with different weight fractions. Experimental studies were conducted as per standard to find the mechanical properties of PCL based composites. The data obtained shows that there is a 22% increase in tensile strength, 18% increase in hardness and 100% increase in impact strength for the specimen with 10% sisal fiber compared to neat PCL specimen. The mechanical property reduces when the fiber content is increased to 15%. These PCL based composites shall find applications in the packaging industry and consumer goods that have less service temperature.
Technical Paper

Mechanical and Microstructural Behaviour of Friction Stir Welded Al6061/Cr2O3 Metal Matrix Composite

2021-10-01
2021-28-0224
Aluminium metal matrix composite are broadly used in various field like aerospace, marine and automobile application. The application of composites necessitates joining process and its difficult due to different materials. To address the considering difficulties the present study is, Cr2O3 was reinforced in Al 6061 matrix in 2 % to 6 % in the incremental step of 2 %. The stir casting method was used to fabricate the composites with 300 rpm stirring speed and the stirring time duration was 3 min throughout the fabrication process. The H13 tool is used for prepared friction stir welded (FSW) joints and tool having 6.7 mm pin diameter and 6 mm pin height. The fabrication process is conducted by 500 rpm and 700 rpm tool rotational speed with 50 mm/min and 60 mm/min welding speed receptively. The atmospheric environmental condition was preferred to perform friction stir welding.
Technical Paper

Effect of Fiber Length on the Mechanical Properties of Woven Jute/Raw Sisal Fiber Composite

2020-09-25
2020-28-0417
The use of natural fibers composite matrix is tremendously increasing day to day and acting as a replacement product to many conventional materials in the automobile and aviation sectors. It was preferred due to its bio-degradability, weight to strength ratio, easy availability, and lightweight. The crisscrossed woven jute and raw-sisal fibers had drawn the superior properties in the advanced developing field of the composite. The main purpose of this project is to evaluate the mechanical properties and the influence of raw sisal fiber with woven Jute/Epoxy composite by varying the size of raw sisal in three variable lengths such as 10mm, 20mm, and 30mm respectively. The composite laminates were fabricated by the conventional hand-layer technique. The mechanical characterization like the tensile test, flexural test, and hardness, was estimated on the fabricated jute/sisal hybrid composite material.
X