Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Experimental Analysis and Modelling of Solid Lubricant Coating on Mild Steel Using EDC

2022-12-23
2022-28-0553
This study reports a simulation model to predict the coating thickness during the Electric Discharge Coating (EDC) process and validates it with experimental analysis. Solid lubricant coating was developed on the mild steel substrate using WS2, and Cu (50:50) based green compact electrodes. The simulation model developed by using COMSOL Multiphysics (5.5) software and the accumulated growth height from the heavy species transport calculated as coating thickness. Experiments with the same input parameters and coating thickness were measured, compared with simulation result and the results show with error fraction of 3% to 12%. Therefore, the present developed simulation model can be employed to predict the thickness of solid lubricant coating by EDC process with minimum error.
Technical Paper

Investigation of Wire EDM Machining Parameters on Duplex Stainless Steel Using ANOVA and RSM

2022-12-23
2022-28-0535
The research aims to optimize the surface roughness, material removal rate (MRR), tool wear, and spark gap for input machining parameters such as Pulse on-off time and wire feed rate. The experiment results of WEDM of Duplex stainless steel are optimized by ANOVA and Response surface methodology (RSM) approach. Taguchi’s orthogonal array L9 (3*3) was used to design the test condition for the experiment. After the model validation, ANOVA was used to identify the most significant input factor on the output. Response surface methodology was used to find the ideal cutting conditions which produce the best-desired output in terms of less tool wear, lower surface roughness, lower spark gap, and higher material removal rate. The optimal MRR, Spark Gap, surface roughness, and tool wear parameters for Duplex Stainless Steel are obtained at Pulse on 110.23, Pulse off time of 56.0, and a wire feed rate of 1.0.
Technical Paper

Parametric Optimization of Friction Stir Welded AA2024 using Regression Methods

2021-10-01
2021-28-0223
The developed model analysis is built in matrix runs to optimise the friction stir welding parameters of rotational speed, welding speed, shoulder diameter and tilt angle in this research. The aim of any design is to maximise the welded properties, either to surpass the base metal properties. The model that is created is the product of a number of regression methods that have been tested for adequacy. In this model we have taken three levels of varying parameters shoulder diameters, rotational speed, welding speed. Mathematical model is developed for the effect of three process parameter at three levels using response surface methodology (RSM).
Technical Paper

Mechanical and Microstructural Behaviour of Friction Stir Welded Al6061/Cr2O3 Metal Matrix Composite

2021-10-01
2021-28-0224
Aluminium metal matrix composite are broadly used in various field like aerospace, marine and automobile application. The application of composites necessitates joining process and its difficult due to different materials. To address the considering difficulties the present study is, Cr2O3 was reinforced in Al 6061 matrix in 2 % to 6 % in the incremental step of 2 %. The stir casting method was used to fabricate the composites with 300 rpm stirring speed and the stirring time duration was 3 min throughout the fabrication process. The H13 tool is used for prepared friction stir welded (FSW) joints and tool having 6.7 mm pin diameter and 6 mm pin height. The fabrication process is conducted by 500 rpm and 700 rpm tool rotational speed with 50 mm/min and 60 mm/min welding speed receptively. The atmospheric environmental condition was preferred to perform friction stir welding.
Technical Paper

Studies on Metallurgical and Mechanical Properties of Pulsed Current Gas Tungsten Arc Welded Aerospace 80A Grade Alloy

2021-10-01
2021-28-0241
This work inspects the metallurgical and tensile demeanor of pulsed current gas tungsten arc welded ERNiCrCoMo-1 filler wire on alloy 80A weldment. Defect free weldment was achieved in a four pass through PCGTA welding. The center of the weld microstructure is decorated with equiaxed dendritic structure and columnar dendritic structure. SEM analysis showed the existence of Mo, Fe and Ti secondary phase precipitation in the grain boundary region of the weld zone. Tensile testing was conducted to analysis the strength and ductility of weldment. The result showed that the tensile strength and ductility were lower than that of base metal (BM).
Technical Paper

Comparative Studies on Conventional Groove SMA and GMA Welds of Dissimilar 304LN ASS and HSLA Steels

2020-09-25
2020-28-0405
Dissimilar metal welds (DMWs), between austenitic stainless steel (ASS) and micro alloyed high strength low alloy steel (HSLA), are used in high temperature applications in power stations and petrochemical plants. The gas metal arc welding (GMAW) has surpassed the shielded metal arc welding (SMAW) process due to its advantages of producing fast, long, clean continuous weld at any position [1, 2, 3, 4, 5]. A studies on mechanical and metallurgical properties of conventional V-groove SMAW and GMA Welding of dissimilar 20 mm thick 304LN ASS and micro alloyed HSLA steel plate were carried out by using austenitic E308L- 15 electrode with gas tungsten arc welding (GTAW) root pass. The tensile (axial and all-weld) properties, hardness and microstructure of the weld and HAZ are analyzed.
Technical Paper

Investigation on the Effect of Pulsed Frequency on Microstructure and Hardness of Alloy C-2000 by Current Pulsing

2020-09-25
2020-28-0420
The objective of the study is to investigate the effect of current pulsation frequency on the weld bead microstructure, segregation and hardness of Hastelloy C-2000 weldments. Bead on Plate (BoP) welds were made by using Pulsed Current Gas Tungsten Arc Welding method (PCGTAW) at eleven different frequencies. The weld bead width and depth of penetration was measured with the help of Dinolite macro analyzer. The microstructure of weldments are further examined through optical microscope and Scanning Electron Microscopy (SEM) to identify the type of grain, grain coarsening and extent of the Heat Affected Zone (HAZ). The grain structure turn into finer and equiaxed in all cases and there was an optimum frequency range over which the significant grain refinement was observed. Microsegregation of alloying elements were computed with the aid of Energy Dispersive X-ray Spectroscopy (EDS). Vickers Hardness Tester was used to measure the hardness of the weld samples at ambient conditions.
Technical Paper

Studies on Metallurgical and Mechanical Properties of Plasma Arc Welded Aerospace 80A Grade Alloy

2020-09-25
2020-28-0466
The current research work scrutinized the influence of plasma arc in the metallurgical and mechanical behavior of Nimonic 80A weldment. Defect free weld bead of 6 mm thickness was achieved in a single pass through plasma arc welding. The microstructure of weldment is decorated with cellular dendritic structure at the center and at the weld interface region columnar dendritic structure was observed. Metallurgical analysis showed the Cr and Ti secondary precipitates in the interdendritic region of the WZ. The existence of M23C6 and Cr2Ti were observed through the X-ray diffraction analysis. Both tensile test and microhardness test were conducted to study the mechanical properties of weldment. The result concluded that both the strength and ductility inferior than base metal and the hardness of the weld bead is similar to that of BMl.
Journal Article

Hot Corrosion Demeanour of Key-Hole Plasma Arc Welded Aerospace Grade Hastelloy X in Molten Salts Environment

2020-09-25
2020-28-0422
The current work investigates the hot corrosion demeanour of Hastelloy X weldment produced with autogenous mode through key-hole plasma arc welding (K-PAW). The hot corrosion test has been performed for weldment in molten salt-1 (MS-1) (75 % Na2SO4 + 25 % V2O5) and molten salt-2 (MS-2) (75 % Na2SO4 + 20 % V2O5 + 5 % NaCl) circumstance for 25 hrs (25 cycles) at 900 °C. The MS-1 substrate of both base metal and weldment provided the lowest weight gain than the MS-2 substrate. The NaCl in the MS-2 causes severe hot corrosion on the substrate, whereas the absence of NaCl in MS-1 reduces the hot corrosion effects. The highest parabolic constant is observed for K-PAW weldment in MS-2 condition. The tendency of hot corrosion rate follows the order of, Base Metal MS-1 < K-PAW MS-1 < Base Metal MS-2 < K-PAW MS-2. The occurrence of protective phases like chromium oxides (Cr2O3), spinel oxides (NiCr2O4 and NiFe2O4) Nickel oxide (NiO) on the substrate resist the further oxidation.
Technical Paper

Effect of Austenitic Filler Wires on Duplex Stainless Steel 2205 Weldment Made by Gas Tungsten Arc Welding

2020-09-25
2020-28-0431
Duplex stainless steel (DSS) 2205 grade is welded with austenitic filler wires (ERNiCrMo-3 and ERNiCrMo-4) using gas tungsten arc welding (GTAW) process to operate at marine environments. Microstructure using optical (OM) and scanning electron microscopes (SEM) with energy dispersive spectroscope (EDS) are utilized to examine the metallurgical characterization of DSS 2205 weldments. Microhardness, impact, and tensile tests are employed to obtain the mechanical properties of weldments. Secondary precipitates such as Mo23C6 and Cr23C6 are formed in the ERNiCrMo-3 weldment which reduced the mechanical properties. In this study, ERNiCrMo-4 filler wire is provided enhanced mechanical properties for welding DSS 2205.
X