Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Investigation on the Mechanical Properties of Date Seed and Neem Gum Powder Added Natural Composites

2024-02-23
2023-01-5150
The experimental investigation aims to improve natural composite materials aligned with feasible development principles. These composites can be exploited across several industries, including the automobile and biomedical sectors. This research employs date seed powder and neem gum powder as reinforcing agents, along with polyester resin as the base material. The fabrication route comprises compression moulding, causing the production of the natural composite material. This study focuses extensively on mechanical characteristics such as tensile strength, flexural strength, hardness, and impact resistance to undergo comprehensive testing. Furthermore, the chemical properties of the composites are examined using the FTIR test to gain understanding by integrating different proportions of date seed powder (5%, 10%, 15%, and 20%) and neem gum powder (0%, 3%, 6%, and 9%) in the matrix phase.
Technical Paper

Unlocking the Potential of Water-Blended Karanji Ester and EGR in CI Engines: A Micro-Explosion Effect Investigation

2023-11-10
2023-28-0074
Biodiesel, which is made from the methyl ester of vegetable oils, is becoming more and more popular as an alternative fuel for compression ignition engines because it is good for the environment and can be used as a replacement fuel without making major changes to the engine. Biodiesel offers several key advantages, including its ready availability, environment friendly and its ability to contribute to lower carbondioxide levels in the atmosphere. An exhaust gas recirculation (EGR)-equipped Kirloskar compression ignition engine is used in this research to examine the influence of micro-explosions on the reduction of nitrogen oxides and smoke. The fuel chosen is Karanji oil methyl ester. The experiment involved varying the exhaust gas quantity in increments of 5%, ranging from 5% to 15%, as exhaust gas recirculation (EGR) is recognized as an effective technique for reducing NOx emissions. Similarly, the study also adjusted the water content, ranging from 5% to 15% in 5% increments.
Technical Paper

CFD Analysis of Fuel Tank to Reduce Liquid Sloshing

2023-11-10
2023-28-0084
This paper demonstrates the sloshing phenomena of a cylindrical tank with and without baffles. The main objective of this study is to design baffles of different configurations to reduce sloshing in a cylindrical tank partially filled with gasoil-liquid subjected to only longitudinal acceleration and deceleration. Two different baffle designs have been introduced in the present study. A 3-D transient analysis of a cylindrical tank was carried out using ANSYS-FLUENT with and without baffles. Volume of Fluid (VOF) method was used to study the free surface profile of the fluid in the considered tank. Pressure distribution, velocity distribution and force distribution have been studied in the present study. It has been observed that the new design of baffle was able to reduce sloshing effectively.
Technical Paper

Influence of Various Parameters of Turning Low Carbon Steel with M2 HSS Tool Using Minimum Quantity Lubrication

2022-12-23
2022-28-0533
Turning is a widely used manufacturing process in mechanical machining industries, while the cost associated with this process is high due to the cost involved in changing tools or tool regrinding. All the parameters of turning, like feed rate, cutting speed, and depth of cut, substantially impact the tool wear, which subsequently reduces tool life. Cooling methods like flooding, Minimum Quantity Lubrication (MQL), etc., are incorporated to minimise these effects on the tool and workpiece interface. When using these cooling techniques, the process parameters involved play vital roles in increasing the effectiveness. This paper focuses on the effects of machining parameters on the tool and the workpiece quality. Experiments were conducted to study the impact of various input parameters of the turning process on the tool tip temperature, cutting forces, and tool wear, ultimately affecting the tool's life.
Technical Paper

Total Life Cycle Analysis of CNG and Hydrogen Enriched CNG Powered Vehicles: A Comparative Evaluation

2021-09-22
2021-26-0105
Vehicles consume energy and release harmful emissions throughout their life period from the manufacturing stage of raw materials to the vehicle scrapyard. The current Green-House Gas (GHG) emissions from diesel and petrol vehicles are reported to be 164 g CO2/km and 156 g CO2/km respectively. Thus, enormous research studies are been carried out for low-carbon alternative fuel-powered vehicles to reduce the overall GHG emissions. Numerous research on hydrogen as a transportation fuel has demonstrated the potential of reduced vehicular emissions compared to conventional fuels. Life cycle assessment (LCA) is a comprehensive methodology used for estimating the overall environmental impact of vehicles. In this present work, a comparative LCA is conducted between Compressed Natural gas (CNG) powered vehicles and H-CNG powered vehicles. The effect of the two alternative vehicles is assessed from various points in their lifetime using the GREET model software.
Technical Paper

Electromagnetic Analysis of Permanent Magnet Brushed Direct Current Motors for Automotive Applications—Part 2

2021-02-11
2020-01-5229
This paper describes the modelling and electromagnetic analysis of Permanent Magnet Brushed Direct Current (PMBDC) motor using Finite Element Analysis (FEA) software packages. The designed motors referred in this analysis are fit for use in applications of the electronic throttle control and exhaust gas recirculation in automobiles. Performances of the designed PMBDC models are compared with the traditionally used machines. Three PMBDC models with different operating characteristics are proposed for the two applications. Each model is suitable for use in both applications. Cost analysis of the motors is also carried out, and comparison with the traditionally used machines is done.
Technical Paper

Noise Absorption Behavior of Aluminum Honeycomb Composite

2020-09-25
2020-28-0453
Natural fibers are one of the major ways to improve environmental pollution. In this study experimental investigation and simulation of honeycomb filled with cotton fabric, wood dust and polyurethane were carried out. This study determines the potential use of cotton fabric, wood dust as good sound absorbers. Automotive industries are looking forward to materials that have good acoustic properties, lightweight, strong and economical. This study provides a better understanding of sound-absorbing material with other mechanical properties. With simulation and experimental results, validation of works provides a wider industrial application for the interior of automotive industries including marine, aviation, railway industry and many more.
Technical Paper

Studies on Metallurgical and Mechanical Properties of Plasma Arc Welded Aerospace 80A Grade Alloy

2020-09-25
2020-28-0466
The current research work scrutinized the influence of plasma arc in the metallurgical and mechanical behavior of Nimonic 80A weldment. Defect free weld bead of 6 mm thickness was achieved in a single pass through plasma arc welding. The microstructure of weldment is decorated with cellular dendritic structure at the center and at the weld interface region columnar dendritic structure was observed. Metallurgical analysis showed the Cr and Ti secondary precipitates in the interdendritic region of the WZ. The existence of M23C6 and Cr2Ti were observed through the X-ray diffraction analysis. Both tensile test and microhardness test were conducted to study the mechanical properties of weldment. The result concluded that both the strength and ductility inferior than base metal and the hardness of the weld bead is similar to that of BMl.
Technical Paper

Optical Surface Roughness Evaluation of Ground Specimens Using Speckle Line Images

2020-09-25
2020-28-0514
A well-established method of surface roughness measurement is of stylus-based. The filtering effect of the stylus tip is the major lacuna of the process. So in the present study, a vision based 100% inspection procedure is proposed for the characterization of ground specimens. A CMOS camera, and monochromatic line laser source were used for capturing speckle line images of the ground specimens. Signal vectors were generated from each of the surface images of ground specimens using MATLAB software. On the other hand the roughness of the ground specimens, particularly the Arithmetic roughness average (Ra) & Arithmetic mean slope (Rda) were computed using a stylus instrument. It was found that standard deviation and kurtosis having good correlation with the image pixel intensity of the signal vectors with the correlation coefficient of 0.96 & 0.89 for Ra and 0.86 & 0.82 for Rda respectively.
Technical Paper

Investigations on Computational Meshing Techniques of FSAE Space Frame Chassis

2020-09-02
2020-01-5081
The FSAE is a world-renowned competition, in which students from across the globe compete against each other. The chassis is the main framework of the car, which is inherently responsible for accommodating all the components. The chassis is broadly classified into two types—monocoque and spaceframe. The FSAE chassis is of spaceframe type. The chassis also provides structural rigidity to the body of the car. It was observed through literature study that very minimal amount of research has been done on analyzing and validating the chassis by applying the different meshing techniques, namely 1D, 2D, and 3D. The mesh quality is very essential to obtain precise results and hence, effective methods for creating the mesh have been dealt with in this article. This study is on new investigations on different meshing techniques that can be implemented on an FSAE chassis.
Technical Paper

Design and Fabrication of Carbon Fibre/Epoxy-Aluminum Hybrid Suspension Control Arms for Formula SAE Race Cars

2020-04-14
2020-01-0230
Suspension system of a vehicle plays an important role to carefully control motion of the wheel throughout the travel. The vertical and the lateral dynamics (ride and handling) is affected by the unsprung-to-sprung mass ratio. Lower value of this mass ratio leads to enhanced performance of the car. To optimize the unsprung mass of the car, design of control arm plate is optimized with Aluminum material and Carbon fibre reinforced composite control arms framework are used to achieve high stiffness to weight ratio. These leads to increase in overall power to weight ratio of the car which helps to deliver maximum performance to the wheels. Through analysis of real-life working conditions of the entire steering knuckle assembly in ACP pre- post ANSYS 18.1 with the defined boundary conditions, equivalent stress and total deformations are obtained. Based on the results, geometrical topology of the control arms plates is further optimized.
Technical Paper

Handling of Data from Heterogeneity of Vehicular Devices through Inter-Networking

2019-10-11
2019-28-0156
Collection of various data from sensed data or raw availability of data from transcript or interdependency of data from various sources is a tedious task in a real time scenario like an Indian context is considered. Planning to find a solution to collect the data from various vehicular devices about the information related to the pollution becomes a cumbersome job. The need of the data, under what time duration data has to be transmitted, how they are interconnected and whether data needs to be stored or how they are processed is a major question that arise when dealing with collecting data and internetworking with various vehicular devices. A study of two different types of approaches for internetworking between the devices is discussed. One related to real time setup of mobile application and other with the dynamic cluster approach when the nodes are moving in a region was considered.
Technical Paper

Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application

2019-10-11
2019-28-0134
Considerable weight of an automobile is constituted by the engine and there is scope for improvement in fuel efficiency and emission control through optimization of weight in the engine. In this work, AlSi10Mg alloy produced by the direct metal laser sintering (DMLS) is suggested for engine application which is a lightweight aluminum alloy. Mechanical properties like tensile strength, compressive strength, and hardness of both cast and DMLS manufactured alloy are compared followed by analysis of SEM images of tensile test fractured surfaces. Reciprocating wear test is carried out for one lakh cycles at 125°C temperature with SAE 40 grade oil as lubricant. Co-efficient of friction (COF), wear rate of the cast and DMLS manufactured samples are compared. Wear patterns are analyzed using SEM images of the wear tracks.
Technical Paper

Investigations on Dimensional Analysis of Fused Filament Fabrication of Wax Filament by Taguchi Design

2019-10-11
2019-28-0133
Experimental investigations were carried out on the machinable wax filament using the fused deposition modelling (FDM) rapid prototyping process. The printer used for conducting the experiments was Flash Forge guider 2. The filament material used for this study was machinable wax filament of 1.75 mm diameter. Experimental trials were carried out as per Taguchi L9 orthogonal array to determine the optimum process parameter combination. The dimensional analysis of test samples were carried out in terms of change in volume of samples which is result of combine effect of deviations in all the dimensions of test sample. Four factors each at three levels was used to obtain the optimum printing parameters for better dimensional accuracy and proper printing. The four important printing parameters were taken as factor and set to analyse the significant factor affecting on printing. The complexity in printing of wax filament is taken in to consideration during the experimental study.
Technical Paper

Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles

2019-10-11
2019-28-0094
Various research regarding new types of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide range application of aluminium alloy is in aerospace and Automobile Industries. The demand for this material improved by mechanical properties with little to zero increment in weight. The current work is based on the fabrication of hybrid aluminium metal matrix composites with the addition of TiC (Titanium Carbide) and Al2O3 (Aluminium Oxide) reinforcement particle using stir casting technique. Three types of hybrid composite samples were prepared based on the weight percentage 5% Al2O3+0% TiC (sample-1), 8% Al2O3 + 12% TiC (sample-2), 20% Al2O3+15% TiC (sample-3). The objective of the study is to analyze the mechanical and corrosion properties of the hybrid composite with the influence of the reinforcement and varying the weight fraction of the particles.
Technical Paper

Machinability and Parametric Optimization of Inconel 600 Using Taguchi-Desirability Analysis under Dry Environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion-resistant, excellent mechanical properties, and good creep rupture strength at a higher temperature. Alloy 600 is used in heat treating, phenol condensers, chemical and food processing, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate, and cutting depth on the force, surface roughness, and tool wear is carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Investigation of Machinability Characteristics and Chip Morphology on Inconel 718: Dry and MQL

2019-10-11
2019-28-0066
Inconel 718 has excellent material properties, corrosion, and oxidation property among the nickel based superalloy. This property makes it suitable for producing components operating under extreme environments subjected to pressure and heat. The present study aims to examine the machinability comparison under dry and MQL turning of Inconel 718. The secondary aim is to report the sustainable machining on Inconel 718. Dry and MQL (Minimum Quantity Lubrication) experiments are carried out on Inconel 718 alloy based on Taguchi’s designed L16 orthogonal array. The cutting tools are an advanced coated cutting tool and uncoated tool. The levels of turning parameters are varied at 70, 120, 170 and 220 m/min of turning speed, 0.1, 0.15, 0.2 and 0.25 mm/rev of feed rate and 0.3, 0.4, 0.5 and 0.6 mm of cutting depth. The cutting forces, surface roughness, flank wear, and chip morphology are taken for the current investigation. The factor effect on output responses is studied using 2D plots.
Technical Paper

Turning of Inconel 825 with Coated Carbide Tool Applying Vegetable-Based Cutting Fluid Mixed with CuO, Al2O3 and CNT Nanoparticles by MQL

2019-10-11
2019-28-0060
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with three nanofluids was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of three nanoparticles (CuO, Al2O3, and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness, and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance and smaller flank the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
Technical Paper

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

2019-10-11
2019-28-0061
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function.
Technical Paper

Study of NOx Reduction Efficiency in NSR and NSR-SCR Combined Systems

2019-10-11
2019-28-0087
The present study was carried out to analyze the catalytic action of K2O-Al2O3 in NOx Storage and Reduction (NSR) monolith catalyst and Fe2O3-TiO2 in Selective Catalytic Reduction (SCR) monolith catalyst. The core objective of this investigation is to determine the maximum percentage of Oxides of Nitrogen (NOx) reduction in NSR and NSR-SCR combined system with respect to engine exhaust gas temperature and compares the results with the results of the conventional mode of operation. To accomplish this task monolith ceramic bricks were coated with K2O-Al2O3 (NSR) and Fe2O3-TiO2 (SCR) catalyst and were placed in different configurations inside the catalytic chamber. Several trials were attempted to get the optimal operating temperature that has a maximum NOx removal efficiency when successively connecting a single NSR catalyst and the combined NSR-SCR double bed catalyst. Single NSR monolith at 320 °C, showed the best NOx conversion rate of 74%.
X