Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Lightweighting Impacts on Energy Consumption Reduction Potential Across Advanced Vehicle Powertrains

2024-04-09
2024-01-2266
The National Highway Traffic Safety Administration (NHTSA) plays a crucial role in guiding the formulation of Corporate Average Fuel Economy (CAFE) standards, and at the forefront of this regulatory process stands Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy (DOE) research institution, has developed Autonomie—an advanced and comprehensive full-vehicle simulation tool that has solidified its status as an industry standard for evaluating vehicle performance, energy consumption, and the effectiveness of various technologies. Under the purview of an Inter-Agency Agreement (IAA), the DOE Argonne Site Office (ASO) and Argonne have assumed the responsibility of conducting full-vehicle simulations to support NHTSA's CAFE rulemaking initiatives. This paper introduces an innovative approach that hinges on a large-scale simulation process, encompassing standard regulatory driving cycles tailored to various vehicle classes and spanning diverse timeframes.
Technical Paper

Impact of Advanced Technologies on Energy Consumption of Advanced Electrified Medium-Duty Vehicles

2024-04-09
2024-01-2453
The National Highway Traffic Safety Administration (NHTSA) has been leading U.S. efforts related to the rulemaking process for Corporate Average Fuel Economy (CAFE) standards. Argonne National Laboratory, a U.S. Department of Energy (DOE) national laboratory, has developed a full-vehicle simulation tool called Autonomie that has become one of the industry standard tools for analyzing vehicle performance, energy consumption, and technology effectiveness. Through an Interagency Agreement, the DOE Argonne Site Office and Argonne National Laboratory have been tasked with conducting full vehicle simulation to support NHTSA CAFE rulemaking. This paper presents an innovative approach focused on large-scale simulation processes spanning standard regulatory driving cycles, diverse vehicle classes, and various timeframes. A key element of this approach is Autonomie’s capacity to integrate advanced engine technologies tailored to specific vehicle classes and powertrains.
Technical Paper

Modeling Pre-Chamber Assisted Efficient Combustion in an Argon Power Cycle Engine

2024-04-09
2024-01-2690
The Argon Power Cycle (APC) is a novel zero-emission closed-loop argon recirculating engine cycle which has been developed by Noble Thermodynamics Systems, Inc. It provides a significant gain in indicated thermal efficiency of the reciprocating engine by breathing oxygen and argon rather than air. The use of argon, a monatomic gas, greatly increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. This technology delivers a substantial improvement in reciprocating engine performance, maximizing the energy conversion of fuel into useful work. Combined Heat and Power (CHP) operating under the APC represents a promising solution to realize a net-zero-carbon future, providing the thermal energy that hard-to-electrify manufacturing processes need while at the same time delivering clean, dispatchable, and efficient power.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

Transmission Shifting Analysis and Model Validation for Medium Duty Vehicles

2023-04-11
2023-01-0196
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data.
Technical Paper

Real Time Bearing Defect Classification Using Time Domain Analysis and Deep Learning Algorithms

2023-04-11
2023-01-0096
Structural Health Monitoring (SHM), especially in the field of rotary machinery diagnosis, plays a crucial role in determining the defect category as well as its intensity in a machine element. This paper proposes a new framework for real-time classification of structural defects in a roller bearing test rig using time domain-based classification algorithms. Along with the bearing defects, the effect of eccentric shaft loading has also been analyzed. The entire system comprises of three modules: sensor module – using accelerometers for data collection, data processing module – using time-domain based signal processing algorithms for feature extraction, and classification module – comprising of deep learning algorithms for classifying between different structural defects occurring within the inner and outer race of the bearing.
Technical Paper

Automated Vehicle Perception Sensor Evaluation in Real-World Weather Conditions

2023-04-11
2023-01-0056
Perception in adverse weather conditions is one of the most prominent challenges for automated driving features. The sensors used for mid-to-long range perception most impacted by weather (i.e., camera and LiDAR) are susceptible to data degradation, causing potential system failures. This research series aims to better understand sensor data degradation characteristics in real-world, dynamic environmental conditions, focusing on adverse weather. To achieve this, a dataset containing LiDAR (Velodyne VLP-16) and camera (Mako G-507) data was gathered under static scenarios using a single vehicle target to quantify the sensor detection performance. The relative position between the sensors and the target vehicle varied longitudinally and laterally. The longitudinal position was varied from 10m to 175m at 25m increments and the lateral position was adjusted by moving the sensor set angle between 0 degrees (left position), 4.5 degrees (center position), and 9 degrees (right position).
Journal Article

Development of a Supercharged Octane Number and a Supercharged Octane Index

2023-04-11
2023-01-0251
Gasoline knock resistance is characterized by the Research and Motor Octane Number (RON and MON), which are rated on the CFR octane rating engine at naturally aspirated conditions. However, modern automotive downsized boosted spark ignition (SI) engines generally operate at higher cylinder pressures and lower temperatures relative to the RON and MON tests. Using the naturally aspirated RON and MON ratings, the octane index (OI) characterizes the knock resistance of gasolines under boosted operation by linearly extrapolating into boosted “beyond RON” conditions via RON, MON, and a linear regression K factor. Using OI solely based on naturally aspirated RON and MON tests to extrapolate into boosted conditions can lead to significant errors in predicting boosted knock resistance between gasolines due to non-linear changes in autoignition and knocking characteristics with increasing pressure conditions.
Technical Paper

Vehicle-In-The-Loop Workflow for the Evaluation of Energy-Efficient Automated Driving Controls in Real Vehicles

2022-03-29
2022-01-0420
This paper introduces a new systematic workflow for the rapid evaluation of energy-efficient automated driving controls in real vehicles in controlled laboratory conditions. This vehicle-in-the-loop (VIL) workflow, largely standardized and automated, is reusable and customizable, saves time and minimizes costly dynamometer time. In the first case study run with the VIL workflow, an automated car driven by an energy-efficient driving control previously developed at Argonne used up to 22 % less energy than a conventional control. In a VIL experiment, the real vehicle, positioned on a chassis dynamometer, has a digital twin that drives in a virtual world that replicates real-life situations, such as approaching a traffic signal or following other vehicles.
Technical Paper

Development of a Willans Line Rule-Based Hybrid Energy Management Strategy

2022-03-29
2022-01-0735
The pre-prototype development of a simulated rule-based hybrid energy management strategy for a 2019 Chevrolet Blazer RS converted parallel P4 full hybrid is presented. A vehicle simulation model is developed using component bench data and validated using EPA-reported dynamometer fuel economy test data. A combined Willans line model is proposed for the engine and transmission, with hybrid control rules based on efficiency-derived engine power thresholds. Algorithms are proposed for battery state of charge (SOC) management including engine loading and one pedal strategies, with battery SOC maintained within 20% to 80% safe limits and charge balanced behavior achieved. The simulated rule-based hybrid control strategy for the hybrid vehicle has an energy consumption reduction of 20% for the Hot 505, 3.6% for the HwFET, and 12% for the US06 compared to the stock vehicle.
Technical Paper

Numerical Investigation of the Impact of Fuel Flow Rate on Combustion in a Heavy-Duty Diesel Engine with a Multi-Row Nozzle Injector

2022-03-29
2022-01-0395
Diesel engines are one of the most popular combustion systems used in different types of heavy-duty applications because of higher efficiencies compared to the spark ignition engines. Combustion phasing and the rate of heat release in diesel engines are controlled by the rate at which the fuel is injected into the combustion chamber near top dead center. In this work, computational fluid dynamics (CFD) was employed to simulate the combustion behavior of a heavy-duty diesel engine equipped with a 16-hole injector, in which the nozzles were arranged in two individual rows. The two rows of nozzles have differential flow rate due to the geometrical construction of the injector. Combustion and performance characteristics of the engine were compared with and without considering the differential flow rate of the nozzle rows at a range of injection timing values.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Technical Paper

Three-Dimensional CFD Investigation of Pre-Spark Heat Release in a Boosted SI Engine

2021-04-06
2021-01-0400
Low-temperature heat release (LTHR) in spark-ignited internal combustion engines is a critical step toward the occurrence of auto-ignition, which can lead to an undesirable phenomenon known as engine knock. Hence, correct predictions of LTHR are of utmost importance to improve the understanding of knock and enable techniques aimed at controlling it. While LTHR is typically obscured by the deflagration following the spark ignition, extremely late ignition timings can lead to LTHR occurrence prior to the spark, i.e., pre-spark heat release (PSHR). In this research, PSHR in a boosted direct-injection SI engine was numerically investigated using three-dimensional computational fluid dynamics (CFD). A hybrid approach was used, based on the G-equation model for representing the turbulent flame front and the multi-zone well-stirred reactor model for tracking the chemical reactions within the unburnt region.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Technical Paper

Modification of the Internal Flows of Thermal Propulsion Systems Using Local Aerodynamic Inserts

2020-09-15
2020-01-2039
Modern thermal propulsion systems (TPS) as part of hybrid powertrains are becoming increasingly complex. They have an increased number of components in comparison to traditionally powered vehicles leading to increased demand in packaging requirements. Many of the components in these systems relate to achieving efficiency gains, weight saving and pollutant reduction. This includes turbochargers and diesel or gasoline particulate filters for example and these are known to be very sensitive to inlet boundary conditions. When overcoming packaging requirements, sub-optimal flow distributions throughout the TPS can easily occur. Moreover, the individual components are often designed in isolation assuming relatively flat and artificially quiescent inlet flow conditions in comparison to those they are actually presented with. Thus, some of the efficiency benefits are lost through reduced component aerodynamic efficiency.
Journal Article

Towards Developing an Unleaded High Octane Test Procedure (RON>100) Using Toluene Standardization Fuels (TSF)

2020-09-15
2020-01-2040
An increase in spark-ignition engine efficiency can be gained by increasing the engine compression ratio, which requires fuels with higher knock resistance. Oxygenated fuel components, such as methanol, ethanol, isopropanol, or iso-butanol, all have a Research Octane Number (RON) higher than 100. The octane numbers (ON) of fuels are rated on the CFR F1/F2 engine by comparing the knock intensity of a sample fuel relative to that of bracketing primary reference fuels (PRF). The PRFs are a binary blend of iso-octane, which is defined to an ON of 100, and n-heptane, which represents an ON of 0. Above 100 ON, the PRF scale continues by adding diluted tetraethyl lead (TEL) to iso-octane. However, TEL is banned from use in commercial gasoline because of its toxicity. The ASTM octane number test methods have a “Fit for Use” test that validate the CFR engine’s compliance with the octane testing method by verifying the defined ON of toluene standardization fuels (TSF).
Technical Paper

Numerical Analysis of Fuel Impacts on Advanced Compression Ignition Strategies for Multi-Mode Internal Combustion Engines

2020-04-14
2020-01-1124
Multi-mode combustion strategies may provide a promising pathway to improve thermal efficiency in light-duty spark ignition (SI) engines by enabling switchable combustion modes, wherein an engine may operate under advanced compression ignition (ACI) at low load and spark-assisted ignition at high load. The extension from the SI mode to the ACI mode requires accurate control of intake charge conditions, e.g., pressure, temperature and equivalence ratio, in order to achieve stable combustion phasing and rapid mode-switches. This study presents results from computational fluid dynamics (CFD) analysis to gain insights into mixture charge formation and combustion dynamics pertaining to auto-ignition processes. The computational study begins with a discussion of thermal wall boundary condition that significantly impacts the combustion phasing.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
X