Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hydrogen Hybrid ICE Powertrains with Ultra-Low NOx Emissions in Non-Road Mobile Machinery

2023-04-11
2023-01-0471
In this paper, we will show the potentials of reducing NOx emissions of an H2-ICE to an ultra-low level by hybridizing the H2-ICE in an NRMM powertrain. Real-world measurement data of NRMM together with a simulated hybrid powertrain and operating strategy form the input data for the H2-ICE on the test bench. We have modified a turbocharged four-cylinder in-line gasoline engine for use with directly injected hydrogen. Within several iteration loops, we obtained measurement data that shows that, depending on the operating strategy, ultra-low NOx emissions are reachable. The combination of hybridization, which implies the possibility of recuperation, and the CO2 emission-free H2-ICE leads to a highly efficient, robust, and economic drivetrain with the lowest emissions, perfectly suitable for Non-Road Machinery. Additionally, we will discuss the overall coupled measurement and simulation setup and the reachable NOx emission levels in our tested setup.
Technical Paper

Application of Electrically Driven Coolant Pumps on a Heavy-Duty Diesel Engine

2019-01-15
2019-01-0074
A reduction in CO2 emissions and consequently fuel consumption is essential in the context of future greenhouse gas limits. With respect to the thermodynamic loss analysis of an internal combustion engine, a gap between the net indicated thermal efficiency and the brake thermal efficiency is recognizable. This share is caused by friction losses, which are the focus of this research project. The parasitic loss reduction potential by replacing the mechanical water pump with an electric coolant pump is discussed in the course of this work. This is not a novel approach in light duty vehicles, whereas in commercial vehicles a rigid drive of all auxiliaries is standard. Taking into account an implementation of a 48-V power system in the short or medium term, an electrification of auxiliary components becomes feasible. The application of electric coolant pumps on an Euro VI certified 6-cylinder in-line heavy-duty diesel engine regarding fuel economy was thus performed.
X