Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Radiated Noise Prediction of Air Induction Systems Using Filter Seal Modeling and Coupled Acoustic-Structural Simulation Techniques

2007-04-16
2007-01-0253
In this paper, an analytical procedure for prediction of shell radiated noise of air induction systems (AIS) due to engine acoustic excitation, without a prototype and physical measurement, is presented. A set of modeling and simulation techniques are introduced to address the challenges to the analytical radiated noise prediction of AIS products. A filter seal model is developed to simulate the unique nonlinear stiffness and damping properties of air cleaner boxes. A finite element model (FEM) of the AIS assembly is established by incorporating the AIS structure, the proposed filter seal model and its acoustic cavity model. The coupled acoustic-structural FEM of the AIS assembly is then employed to compute the velocity frequency response of the AIS structure with respect to the air-borne acoustic excitations.
Technical Paper

A Filter Seal Model for Point Mobility Prediction of Air Induction Systems

2006-04-03
2006-01-1209
Virtual design validation of an air induction system (AIS) requires a proper finite element (FE) assembly model for various simulation based design tasks. The effect of the urethane air filter seal within an AIS assembly, however, still poses a technical challenge to the modeling of structural dynamic behaviors of the AIS product. In this paper, a filter seal model and its modeling approach for AIS assemblies are introduced, by utilizing the feature finite elements and empiric test data. A bushing element is used to model the unique nonlinear stiffness and damping properties of the urethane seal, as a function of seal orientation, preloading, temperature and excitation frequency, which are quantified based on the test data and empiric formula. Point mobility is used to character dynamic behaviors of an AIS structure under given loadings, as a transfer function in frequency domain.
Technical Paper

Vibration Test Specification for Automotive Products Based on Measured Vehicle Load Data

2006-04-03
2006-01-0729
A test load specification is required to validate an automotive product to meet the durability and design life requirements. Traditionally in the automotive industry, load specifications for design validation tests are directly given by OEMs, which are generally developed from an envelop of generic customer usage profiles and are, in most cases, over-specified. In recent years, however, there are many occasions that a proposed load specification for a particular product is requested. The particular test load specification for a particular product is generated based on the measured load data at its mounting location on the given type of vehicles, which contains more realistic time domain load levels and associated frequency contents. The measured time domain load is then processed to frequency domain test load data by using the fast Fourier transform and damage equivalent techniques.
Technical Paper

CAE Virtual Test of Air Intake Manifolds Using Coupled Vibration and Pressure Pulsation Loads

2005-04-11
2005-01-1071
A coupled vibration and pressure loading procedure has been developed to perform a CAE virtual test for engine air intake manifolds. The CAE virtual test simulates the same physical test configuration and environments, such as the base acceleration vibration excitation and pressure pulsation loads, as well as temperature conditions, for design validation (DV) test of air intake manifolds. The original vibration and pressure load data, measured with respect to the engine speed rpm, are first converted to their respective vibration and pressure power spectrum density (PSD) profiles in frequency domain, based on the duty cycle specification. The final accelerated vibration excitation and pressure PSD load profiles for design validation are derived based on the key life test (KLT) duration and reliability requirements, using the equivalent fatigue damage technique.
X