Refine Your Search

Topic

Search Results

Technical Paper

Numerical Simulation of a Direct-Injection Spark-Ignition Engine with Different Fuels

2009-04-20
2009-01-0325
This paper focuses on the numerical investigation of the mixing and combustion of ethanol and gasoline in a single-cylinder 3-valve direct-injection spark-ignition engine. The numerical simulations are conducted with the KIVA code with global reaction models. However, an ignition delay model mitigates some of the deficiencies of the global one-step reaction model and is implemented via a two-dimensional look-up table, which was created using available detailed kinetics models. Simulations demonstrate the problems faced by ethanol operated engines and indicate that some of the strategies used for emission control and downsizing of gasoline engines can be employed for enhancing the combustion efficiency of ethanol operated engines.
Technical Paper

Humidity Effects on a Carbon Hydrocarbon Adsorber

2009-04-20
2009-01-0873
Because combustion engine equipped vehicles must conform to stringent hydrocarbon (HC) emission requirements, many of them on the road today are equipped with an engine air intake system that utilizes a hydrocarbon adsorber. Also known as HC traps, these devices capture environmentally dangerous gasoline vapors before they can enter the atmosphere. A majority of these adsorbers use activated carbon as it is cost effective and has excellent adsorption characteristics. Many of the procedures for evaluating the adsorbtive performance of these emissions devices use mass gain as the measurand. It is well known that activated carbon also has an affinity for water vapor; therefore it is useful to understand how well humidity must be controlled in a laboratory environment. This paper outlines investigations that were conducted to study how relative humidity levels affect an activated carbon hydrocarbon adsorber.
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

Design Considerations & Characterization Test Methods for Activated Carbon Foam Hydrocarbon Traps in Automotive Air Induction Systems

2007-04-16
2007-01-1429
As OEMs race to build their sales fleets to meet ever more stringent California Air Resources Board (CARB) mobile source evaporative emissions requirements, new technologies are emerging to control pollution. Evaporative emissions emanating from sources up-stream in the induction flow and venting through the ducts of the engine air induction system (EIS) need to be controlled in order classify a salable vehicle as a Partial Zero Emissions Vehicle (PZEV) in the state of California. As other states explore adopting California's pollution control standards, demand for emissions control measures in the induction system is expected to increase. This paper documents some of the considerations of designing an adsorbent evaporative emissions device in to a 2007 production passenger car for the North American and Asian markets. This new evaporative emissions device will be permanently installed in the vehicle's air cleaner cover without requiring service for 150K miles (expected vehicle life).
Technical Paper

Model Reference Adaptive Control of a Pneumatic Valve Actuator for Infinitely Variable Valve Timing and Lift

2007-04-16
2007-01-1297
Electro-pneumatic valve actuators are used to eliminate the cam shaft of a traditional internal combustion engine. They are used to control the opening timing, duration, and lift of both intake and exhaust valves. A physics based nonlinear mathematical model called the level one model was built using Newton's law, mass conservation and thermodynamic principles. A control oriented model, the level two model, was created by partially linearizing the level one model for model reference parameter identification. This model reduces computational throughput and enables real-time implementation. A model reference adaptive control system was used to identify the nonlinear parameters that were needed for generating a feedforward control signal. The closed-loop valve lift tracking, valve opening and closing timing control strategies were proposed.
Technical Paper

A Real Time Statistical Method for Engine Knock Detection

2007-04-16
2007-01-1507
The traditional method of engine knock detection is to compare the knock intensity with a predetermined threshold. The calibration of this threshold is complex and difficult. A statistical knock detection method is proposed in this paper to reduce the effort of calibration. This method dynamically calculates the knock threshold to determine the knock event. Theoretically, this method will not only adapt to different fuels but also cope with engine aging and engine-to-engine variation without re-calibration. This method is demonstrated by modeling and evaluation using real-time engine dynamometer test data.
Technical Paper

A Table Update Method for Adaptive Knock Control

2006-04-03
2006-01-0607
Knock correction is the spark angle retard applied to the optimum ignition timing to eliminate knock. In adaptive knock control, this amount of spark retard at an operating point (i.e. Speed, load) is stored in a speed/load characteristic map. It will be reused when the engine is operated in this range once more. In this paper, a method to learn the knock correction values into a speed/load characteristic map is described. This method proportionally distributes the knock correction into the characteristic map according to the distance between the speed/load of these nodes and the current operating point. The distributed knock correction value is filtered and accumulated in its adjacent nodes. Simulation examples demonstrate that the retrieved values from the map by the proposed method are smoother than those produced by the method of [2][3]. The mathematical basis for this method is developed. The one and two independent variable cases are illustrated.
Technical Paper

Multibody Dynamic Simulation of Steering Gear Systems With Three-Dimensional Surface Contacts

2006-02-14
2006-01-1960
In an effort to understand steering systems performance and properties at the microscopic level, we developed Multibody simulations that include multiple three-dimensional gear surfaces that are in a dynamic state of contact and separation. These validated simulations capture the dynamics of high-speed impact of gears traveling small distances of 50 microns in less than 10 milliseconds. We exploited newly developed analytic, numeric, and computer tools to gain insight into steering gear forces, specifically, the mechanism behind the inception of mechanical knock in steering gear. The results provided a three dimensional geometric view of the sequence of events, in terms of gear surfaces in motion, their sudden contact, and subsequent force generation that lead to steering gear mechanical knock. First we briefly present results that show the sequence of events that lead to knock.
Technical Paper

Closed Loop Maximum Dilution Limit Control using In-Cylinder Ionization Signal

2005-10-24
2005-01-3751
This paper presents a combustion stability index derived from an in-cylinder ionization signal to control the engine maximum EGR limit. Different from the existing approaches that use the ionization signal values to gauge how much EGR was added during the combustion, the proposed method concentrates on using the ionization signal duration and its stochastic properties to evaluate the end result of EGR on combustion stability. When the duration index or indexes are higher than pre-determined values, the EGR limit is set. The dynamometer engine test results have shown promise for closed loop EGR control of spark ignition engines.
Technical Paper

Requirements Setting, Optimization and “Best Fit” Application of AIS Hydrocarbon Adsorption Devices for Engine Evaporative Emissions Breathing Loss Control

2005-04-11
2005-01-1104
To control engine intake evaporative emissions, or “breathing losses”, functions of both Fuel Vapor Storage and Air Induction Systems must be understood. The merging of these diverse systems results in a functional requirements set that is very broad in scope. Several known devices for controlling engine evaporative emissions breathing losses are reviewed and compared. Experimental methods of measuring and estimating hydrocarbon adsorption, approximated by n-butane, are shown, some utilizing scaled laboratory sample units. HC capture efficiency, capacity, flow losses and other performance characteristics of the various devices are then optimally matched to the numerous system needs. Thus, emission control requirements are met, while cost and deleterious effects are minimized, resulting in high level optimal systems.
Technical Paper

Simulation of Pressure Pulsations in a Gasoline Injection System and Development of an Effective Damping Technology

2005-04-11
2005-01-1149
In today's search for a better fuel economy and lower emissions, it is essential to precisely control the injected fuel quantity, as demanded by the engine load, into each of the engine cylinders. In fuel injection systems, the pressure pulsations due to the rapid opening and closing of the injectors can cause uneven injected fuel amounts between cylinders. In order to develop effective techniques to reduce these pressure pulsations, it is crucial to have a good understanding of the dynamic characteristics of such fuel injection systems. This paper presents the benefits of using simulation as a tool to analyze the dynamic behaviors of a V8 gasoline injection system. The fuel system modeling, based on a one-dimensional (1D) lumped parameter approach, has been developed in the AMESim® environment. The comparison between the simulation results and the experimental data shows good agreement in fluid transient characteristics for both time and frequency domains.
Technical Paper

Stochastic Limit Control and Its Application to Knock Limit Control Using Ionization Feedback

2005-04-11
2005-01-0018
Spark timing of an Internal Combustion (IC) engine is often limited by engine knock in the advanced direction. The ability to operate the engine at its advanced (borderline knock) spark limit is the key for improving output power and fuel economy. Due to combustion cycle-to-cycle variations, IC engine combustion behaves similar to a random process and so does the engine performance criteria, such as IMEP (Indicated Mean Effective Pressure), and knock intensity. The combustion stability measure COVariance of IMEP assumes the IMEP is a random process. Presently, the spark limit control of IC engines is deterministic in nature. The controller does not utilize any stochastic information associated with control parameters such as knock intensity for borderline spark limit control. This paper proposes a stochastic limit control strategy for borderline knock control. It also develops a simple stochastic model for evaluating the proposed stochastic controller.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Ionization Signal

2004-10-25
2004-01-2976
Maximum Brake Torque (MBT) timing for an internal combustion engine is the minimum advance of spark timing for best torque. Traditionally, MBT timing is an open loop feedforward control whose values are experimentally determined by conducting spark sweeps at different speed, load points and at different environmental operating conditions. Almost every calibration point needs a spark sweep to see if the engine can be operated at the MBT timing condition. If not, a certain degree of safety margin is needed to avoid pre-ignition or knock during engine operation. Open-loop spark mapping usually requires a tremendous amount of effort and time to achieve a satisfactory calibration. This paper shows that MBT timing can be achieved by regulating a composite feedback measure derived from the in-cylinder ionization signal referenced to a top dead center crank angle position. A PI (proportional and integral) controller is used to illustrate closed-loop control of MBT timing.
Technical Paper

Development of a Canning Method for Catalytic Converters using Ultra Thin Wall Substrates

2004-03-08
2004-01-0144
There are benefits of using ultra thin wall (UTW) substrates (i.e., 900/2, 400/4, etc) in lowering cost and emission level. However, the more fragile mechanical characteristics of the UTW present a challenge to design and manufacture of robust catalytic converters. This paper describes a method of canning trial, where a combined Design of Experiment / Monte-Carlo analysis method was used, to develop and validate a canning method for ultra thin wall substrates. Canning trials were conducted in two stages-- Prototype Canning Trial and Production Canning Trial. In Prototype Canning Trial, the root cause of substrate failure was identified and a model for predicting substrate failure was established. Key factors affecting scrap rate and gap capability were identified and predictions were performed on scrap rate and gap capability with the allowed variations in the key factors. The results provided guidelines in designing production line and process control.
Technical Paper

Inaudible Knock and Partial-Burn Detection Using In-Cylinder Ionization Signal

2003-10-27
2003-01-3149
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. Maximizing engine power and fuel economy is limited by engine knock for a given air-to-fuel charge. Therefore, the ability to detect engine knock and run the engine at its knock limit is a key for the best power and fuel economy. This paper shows inaudible knock detection ability using in-cylinder ionization signals over the entire engine speed and load map. This is especially important at high engine speed and high EGR rates. The knock detection ability is compared between three sensors: production knock (accelerometer) sensor, in-cylinder pressure and ionization sensors. The test data shows that the ionization signals can be used to detect inaudible engine knock while the conventional knock sensor cannot under some engine operational conditions.
Technical Paper

A Study on the Strength of Catalytic Converter Ultra Thin Wall Substrates

2003-03-03
2003-01-0662
Application of Ultra Thin Wall (UTW) ceramic substrates in the catalytic converter system requires the canner and component manufacturers to better understand the root cause and physics behind substrate breakage during the canning process. For this purpose, a ceramic substrate strength study for shoebox design has been conducted within Visteon Corporation. Computer Numerical Control (CNC) machined top and bottom fixtures, with identical inner surfaces as shoebox converter upper and lower shells, were used to crush mat wrapped substrates. Thin film pressure sensor technology enables the recording of substrate surface pressure during the compression process. Shell rib, washcoat, canning speed and cell density effects on substrate failure have been experimentally investigated. The development of a mathematical model helps to identify a better indicator to evaluate the substrate strength in the canning process and establish the strength for uncoated & coated substrates.
Technical Paper

Correlation Study of Exhaust Manifold - Lab Test Results vs Customer Fleet Results

2002-03-04
2002-01-1317
The purpose of this study is to develop specifically a correlation between Exhaust Manifold Cracking Laboratory Test results and 150,000 mile customer fleet usage test results. The study shows that the exhaust manifold design meets the reliability requirements of 10 years or 150,000 miles, given 90th percentile customer usage without an evidence of cracking or audible leaks. This correlation between the Lab Test and the customer Fleet results has been expressed as an acceleration factor. An acceleration factor is the ratio of how much quicker the engine dynamometer test ( i.e. Lab Test ) can accumulate the effect of customer usage over time versus the customers themselves. The acceleration factor is provided for useful life time period of 10 years or 150,000 miles. The recommended acceleration factor, determined in this study, is 38 to 1, comparing the engine dynamometer test ( i.e. Lab Test ) results to 150,000 mile modular truck customer fleet field results.
Technical Paper

Model-based Closed-loop Control of Urea SCR Exhaust Aftertreatment System for Diesel Engine

2002-03-04
2002-01-0287
Based on our error budget analysis, the urea SCR aftertreatment system is uncontrollable under EPA 2007-emission level without an effective closed-loop control strategy. The objective of the closed-loop control is to improve transient response as well as reduce the steady state control error. But the inherent large dead time in the urea SCR aftertreatment system makes the closed-loop control a challenge. In this paper, an innovative closed-loop control architecture is introduced, which combines model-based feedforward control with variable gain-scheduling feedback control. Transient response is improved with the inverse-dynamic feedforward control and the variable-gain closed-loop control. The steady-state response is improved with the closed-loop control. Based on this new strategy, a controller is designed and validated under the simulation and test cell environment. Comparison with the baseline open-loop controller is also conducted. Finally, some conclusions are presented.
X