Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental Study of Ammonia Combustion in a Heavy-Duty Diesel Engine Converted to Spark Ignition Operation

2024-04-09
2024-01-2371
Ammonia is one of the carbon-free alternatives considered for power generation and transportation sectors. But ammonia’s lower flame speed, higher ignition energy, and higher nitrogen oxides emissions are challenges in practical applications such as internal combustion engines. As a result, modifications in engine design and control and the use of a secondary fuel to initiate combustion such as natural gas are considered for ammonia-fueled engines. The higher-octane number of methane (the main component in natural gas) and ammonia allows for higher compression ratios, which in turn would increase the engine's thermal efficiency. One simple approach to initiate and control combustion for a high-octane fuel at higher compression ratios is to use a spark plug. This study experimentally investigated the operation of a heavy-duty compression ignition engine converted to spark ignition and ammonia-methane blends.
Technical Paper

Diesel Oxidation Catalyst Performance with Biodiesel Formulations

2024-04-09
2024-01-2711
Biodiesel (i.e., mono-alkyl esters of long chain fatty acids derived from vegetable oils and animal fats) is a renewable diesel fuel providing life-cycle greenhouse gas emission reductions relative to petroleum-derived diesel. With the expectation that there would be widespread use of biodiesel as a substitute for ultra-low sulfur diesel (ULSD), there have been many studies looking into the effects of biodiesel on engine and aftertreatment, particularly its compatibility to the current aftertreatment technologies. The objective of this study was to generate experimental data to measure the effectiveness of a current technology diesel oxidation catalysts (DOC) to oxidize soy-based biodiesel at various blend levels with ULSD. Biodiesel blends from 0 to 100% were evaluated on an engine using a conventional DOC.
Technical Paper

Statistical Treatise on Critical Biodiesel (B100) Quality Properties in the United States from 2004-2022

2023-08-28
2023-24-0097
The quality of neat biodiesel (B100) is critical for ensuring biodiesel blends used in diesel-powered vehicles do not adversely impact engine performance. In the United States, B100 is required to meet ASTM International’s purity and fuel property requirements in D6751, “Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels.” Here we review the development of this standard for the different grades of B100. The BQ-9000 program, which currently covers over 90% of U.S. and Canadian production volumes, is also described. Engine and original equipment manufacturers have expressed a desire for credible, third-party data on values of various ASTM B100 properties in the commercial market to inform their efforts to address future emissions and durability requirements.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part I: Accelerated Ash Loading and DPF Performance Evaluation

2023-04-11
2023-01-0297
The project objective was to generate experimental data to evaluate the impact of metals doped B20 on DPF ash loading and performance compared to that of conventional petrodiesel. Accelerated ash loading was conducted on two DPFs – one exposed to regular diesel fuel and the other to B20 containing metal dopants equivalent to 4 ppm B100 total metals (currently total metals are limited to 10 ppm in ASTM D6751, the standard for B100). Periodic performance evaluations were conducted on the DPFs at 10 g/L ash loading intervals. After the evaluations at 30 g/L, the DPF was cleaned with a commercial DPF cleaning machine and another round of DPF evaluations were conducted. A comparison of the effect of ash loading with the two fuels and DPF cleaning is presented. The metals doped B20 fuel resulted in ash that was similar to that deposited when exposed to ULSD (lube oil ash) and exhibited similar ash cleaning removal efficiency.
Technical Paper

Investigation of Heat Transfer Characteristics of Heavy-Duty Spark Ignition Natural Gas Engines Using Machine Learning

2022-03-29
2022-01-0473
Machine learning algorithms are effective tools to reduce the number of engine dynamometer tests during internal combustion engine development and/or optimization. This paper provides a case study of using such a statistical algorithm to characterize the heat transfer from the combustion chamber to the environment during combustion and during the entire engine cycle. The data for building the machine learning model came from a single cylinder compression ignition engine (13.3 compression ratio) that was converted to natural-gas port fuel injection spark-ignition operation. Engine dynamometer tests investigated several spark timings, equivalence ratios, and engine speeds, which were also used as model inputs. While building the model it was found that adding the intake pressure as another model input improved model efficiency.
Technical Paper

Characterization of Cycle-by-Cycle Variations of an Optically Accessible Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition

2021-09-05
2021-24-0045
The combustion process in spark-ignition engines can vary considerably cycle by cycle, which may result in unstable engine operation. The phenomena amplify in natural gas (NG) spark-ignition (SI) engines due to the lower NG laminar flame speed compared to gasoline, and more so under lean burn conditions. The main goal of this study was to investigate the main sources and the characteristics of the cycle-by-cycle variation in heavy-duty compression ignition (CI) engines converted to NG SI operation. The experiments were conducted in a single-cylinder optically-accessible CI engine with a flat bowl-in piston that was converted to NG SI. The engine was operated at medium load under lean operating conditions, using pure methane as a natural gas surrogate. The CI to SI conversion was made through the addition of a low-pressure NG injector in the intake manifold and of a NG spark plug in place of the diesel injector.
Technical Paper

Impacts of Biofuel Blending on MCCI Ignition Delay with Review of Methods for Defining Cycle-by-Cycle Ignition Points from Noisy Cylinder Pressure Data

2021-04-06
2021-01-0497
Conventional diesel combustion, also known as Mixing-Controlled Compression Ignition (MCCI), is expected to be the primary power source for medium- and heavy-duty vehicles for decades to come. Displacing petroleum-based ultra-low-sulfur diesel (ULSD) as much as possible with low-net-carbon biofuels will become necessary to help mitigate effects on climate change. Neat biofuels may have difficulty meeting current diesel fuel standards but blends of 30% biofuel in ULSD show potential as ‘drop-in’ fuels. These blends must not make significant changes to the combustion phasing of the MCCI process if they are to be used interchangeably with neat ULSD. An important aspect of MCCI phasing is the ignition delay (ID), i.e. the time between the start of fuel injection and the initial premixed autoignition that initiates the MCCI process.
Technical Paper

Using Demanded Power and RDE Aggressiveness Metrics to Analyze the Impact of CACC Aggressiveness on Heavy Duty Platooning Power Consumption

2021-04-06
2021-01-0069
Presently, a main mobility sector objective is to reduce its impact on the global greenhouse gas emissions. While there are many techniques being explored, a promising approach to improve fuel economy is to reduce the required energy by using slipstream effects. This study analyzes the demanded engine power and mechanical energy used by heavy-duty trucks during platooning and non-platooning operation to determine the aerodynamic benefits of the slipstream. A series of platooning tests utilizing class 8 semi-trucks platooning via Cooperative Adaptive Cruise Control (CACC) are performed. Comparing the demanded engine power and mechanical energy used reveals the benefits of platooning on the aerodynamic drag while disregarding any potential negative side effects on the engine. However, energy savings were lower than expected in some cases.
Technical Paper

Fuel Property Effects of a Broad Range of Potential Biofuels on Mixing Control Compression Ignition Engine Performance and Emissions

2021-04-06
2021-01-0505
Conventional diesel engines will continue to hold a vital role in the heavy- and medium-duty markets for the transportation of goods along with many other uses. The ability to offset traditional diesel fuels with low-net-carbon biofuels could have a significant impact on reducing the carbon footprint of these vehicles. A prior study screened several hundred candidate biofuel blendstocks based on required diesel blendstock properties and identified 12 as the most promising. Eight representative biofuel blendstocks were blended at a 30% volumetric concentration with EPA certification ultra-low-sulfur diesel (ULSD) and were investigated for emissions and fuel efficiency performance. This study used a single cylinder engine (based on the Ford 6.7L engine) using Conventional Diesel Combustion (CDC), also known as Mixing Control Compression Ignition (MCCI). The density, cetane number, distillation curve and sooting tendency (using the yield sooting index method) of the fuels were measured.
Technical Paper

A Support-Vector Machine Model to Predict the Dynamic Performance of a Heavy-Duty Natural Gas Spark Ignition Engine

2021-04-06
2021-01-0529
Machine learning models were shown to provide faster results but with similar accuracy to multidimensional computational fluid dynamics or in-depth experiments. This study used a support-vector machine (SVM), a set of related supervised learning methods, to predict the dynamic performance (i.e., engine power and torque) of a heavy-duty natural gas spark ignition engine. The single-cylinder four-stroke test engine was fueled with methane. The engine was operated at different spark timings, mixture equivalence ratios, and engine speeds to provide the data for training and testing the proposed SVM. The results indicated that the performance and accuracy of the built regression model were satisfactory, with correlation coefficient quantities all larger than 0.95 and root-mean-square errors close to zero for both training and validation datasets.
Technical Paper

Heavy-Duty Engines Exhaust Sub-23 nm Solid Particle Number Measurements

2021-02-24
2021-01-5024
The measurement of solid particles down to 10 nm is being incorporated into global technical regulations (GTR). This study explores the measurement of solid particles below 23 nm by using both current and proposed particle number (PN) systems having different volatile particle remover (VPR) methodologies and condensation particle counter (CPC) cutoff diameters. The measurements were conducted in dynamometer test cells using ten diesel and eight natural gas (NG) engines that were going under development for a variety of global emission standards. The PN systems measured solid PN from more than 700 test cycles. The results from the preliminary campaign showed a 10-280% increase in PN emissions with the inclusion of particles below 23 nm.
Technical Paper

Assessment of In-Use Solid Particle Number Measurement Systems against Laboratory Systems

2020-10-01
2020-01-5074
Euro VI regulations in Europe and its adaptors recently extended the regulation to include Particle Number (PN) for in-use conformity testing. However, the in-use PN Portable Emissions Measurement System (PEMS) is still evolving and has higher measurement uncertainty when compared against laboratory-grade PN systems. The PN systems for laboratory require a condensation particle counter (CPC). Thus, in this study, a CPC-based Horiba PN-PEMS was selected for performance evaluation against the laboratory-grade PN systems. This study was divided into four phases. The first two phases’ measurements were conducted from the Constant Volume Sampler (CVS) tunnel where the brake-specific particle number (BSPN) levels of 1010-12 and 1013 (#/bhp-h) were measured from the engines equipped with diesel particulate filter (DPF) and without DPF, respectively. In comparison against PN systems, PN-PEMS, on average, reported 14% lower BSPN from 82 various tests for the BSPN levels of 1010-11.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

Energy Release Characteristics inside a Spark-Ignition Engine with a Bowl-in-Piston Geometry

2020-01-16
2020-01-5003
The conversion of compression ignition (CI) internal combustion engines to spark-ignition (SI) operation by adding a spark plug to ignite the mixture and fumigating the fuel inside the intake manifold can increase the use of alternative gaseous fuels (e.g., natural gas) in heavy-duty applications. This study proposed a novel, less-complex methodology based on the inflection points in the apparent rate of heat release (ROHR) that can identify and separate the fast-burning stage inside the piston bowl from the slower combustion stage inside the squish region (a characteristic of premixed combustion inside a diesel geometry). A single-cylinder 2L CI research engine converted to natural gas SI operation provided the experimental data needed to evaluate the methodology, at several spark timings, equivalence ratios, and engine speeds.
Journal Article

Methodology to Determine the Fast Burn Period Inside a Heavy-Duty Diesel Engine Converted to Natural Gas Lean-Burn Spark Ignition Operation

2019-12-19
2019-01-2220
The conversion of existing diesel engines to natural-gas operation can reduce the dependence on petroleum imports and curtail engine-out emissions. A convenient way to perform such conversion is by adding a gas injector in the intake manifold and replacing the diesel fuel injector with a spark plug to initiate and control the combustion process. However, challenges may appear with respect to engine’s efficiency and emissions as natural-gas spark-ignition combustion inside a diesel combustion chamber is different to that in conventional spark ignition engines. For example, major difference is the phasing and duration of the fast burn, defined as the period in which the rate of heat release increases linearly with crank angle. This study presents a methodology to investigate the fast burn inside a diesel geometry using heat release data.
Technical Paper

Experimental Investigation of Combustion Characteristics in a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural-Gas Spark-Ignition Operation

2019-09-09
2019-24-0124
Recent development in hydraulic fracking made natural gas (NG) to be a promising alternative gaseous fuel for heavy-duty diesel engines. The existing compression ignition (CI) engine can be retrofitted to NG spark ignition (SI) operation by replacing the diesel injector with a spark plug and fumigating NG into the intake manifold. However, the original diesel piston geometry (flat head and bowl-in-piston chamber) was usually retained to reduce modification cost. The goal of this study was to increase the understanding of the NG lean-burn characteristics in a diesel-like, fast-burn SI combustion chamber. The experimental platform can operate in conventional (i.e., all engine parts are metal) or in optical configuration (i.e., the stock piston and cylinder block are replaced with a see-through piston and an extended cylinder block). The optical data indicated a fast-propagated flame inside the piston bowl.
Technical Paper

Gaseous Fuels Variation Effects on Combustion and Emissions of a Small Direct Injection Natural Gas Engine

2019-04-02
2019-01-0560
Our research focused on the assessment of fuel variation effects on performance of a 34 cc two-stroke, natural gas combustion engine designed for use as the prime mover in either slider-crank or novel linear generator applications. Nearly two-thirds of US homes have either natural gas or liquefied petroleum gas available at low pressures. We tested the engine with three different natural gas blends, pure methane, and pure propane. In order to reduce fuel compression power, we modified the engine to use low-pressure direct injection (LPDI) of gaseous fuels. We examined regulated gaseous emissions, greenhouse gas emissions, and combustion trends over a range of delivered air fuel ratios. Start of Injection (SOI) occurred at either 180 or 190 CA BTDC and efficiency improved by reducing fuel slip. However, for natural gas blends, the predominant emissions were methane - a potent greenhouse gas.
Technical Paper

Experimental Investigation of a Natural Gas Lean-Burn Spark Ignition Engine with Bowl-in-Piston Combustion Chamber

2019-04-02
2019-01-0559
On- and off-road heavy-duty diesel engines modified to spark-ignition natural gas operation can reduce U.S. dependence on imported oil and enhance national energy security. Engine conversion can be achieved through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. This paper investigated combustion characteristics and engine performance at several lean-burn operating conditions that changed spark timing, mixture equivalence ratio, and engine speed, using methane as NG surrogate.
Technical Paper

Heavy-Duty Aerodynamic Testing for CO2 Certification: A Methodology Comparison

2019-04-02
2019-01-0649
Aerodynamic drag testing is a key component of the CO2 certification schemes for heavy-duty vehicles around the world. This paper presents and compares the regulatory approaches for measuring the drag coefficient of heavy-duty vehicles in Europe, which uses a constant-speed test, and in the United States and Canada, which use a coastdown test. Two European trucks and one North American truck were tested using the constant-speed and coastdown methods. When corrected to zero yaw angle, a difference of up to 12% was observed in the measured drag coefficients from the US coastdown procedure and the EU constant-speed test.
X