Refine Your Search

Topic

Search Results

Technical Paper

Federated Learning Enable Training of Perception Model for Autonomous Driving

2024-04-09
2024-01-2873
For intelligent vehicles, a robust perception system relies on training datasets with a large variety of scenes. The architecture of federated learning allows for efficient collaborative model iteration while ensuring privacy and security by leveraging data from multiple parties. However, the local data from different participants is often not independent and identically distributed, significantly affecting the training effectiveness of autonomous driving perception models in the context of federated learning. Unlike the well-studied issues of label distribution discrepancies in previous work, we focus on the challenges posed by scene heterogeneity in the context of federated learning for intelligent vehicles and the inadequacy of a single scene for training multi-task perception models. In this paper, we propose a federated learning-based perception model training system.
Technical Paper

Fuzzy Control of Regenerative Braking on Pure Electric Garbage Truck Based on Particle Swarm Optimization

2024-04-09
2024-01-2145
To improve the braking energy recovery rate of pure electric garbage removal vehicles and ensure the braking effect of garbage removal vehicles, a strategy using particle swarm algorithm to optimize the regenerative braking fuzzy control of garbage removal vehicles is proposed. A multi-section front and rear wheel braking force distribution curve is designed considering the braking effect and braking energy recovery. A hierarchical regenerative braking fuzzy control strategy is established based on the braking force and braking intensity required by the vehicle. The first layer is based on the braking force required by the vehicle, based on the front and rear axle braking force distribution plan, and uses fuzzy controllers.
Technical Paper

Vehicle Feature Recognition Method Based on Image Semantic Segmentation

2022-03-29
2022-01-0144
In the process of truck overload and over-limit detection, it is necessary to detect the characteristics of the vehicle's size, type, and wheel number. In addition, in some vehicle vision-based load recognition systems, the vehicle load can be calculated by detecting the vibration frequency of specific parts of the vehicle or the change in the length of the suspension during the vehicle's forward process. Therefore, it is essential to quickly and accurately identify vehicle features through the camera. This paper proposes a vehicle feature recognition method based on image semantic segmentation and Python, which can identify the length, height, number of wheels and vibration frequency at specific parts of the vehicle based on the vehicle driving video captured by the roadside camera.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

Parameter Optimization of Steering Trapezoid Mechanism Based on Hybrid Genetic Algorithm

2021-04-06
2021-01-0845
Optimization of the steering trapezoid mechanism parameter has great significance for improving vehicular handling performance and steering safety. The mathematical model of the current trapezoid mechanism design is oversimplified; Thus, the value of the optimum parameter is often not achievable. In this paper, a design model for the trapezoidal steering mechanism is proposed taking into consideration the size and kinematic constraints. Based on combining Ackerman's principle and spatial geometric relation, a multi-body dynamics design method is used to derive a nonlinear optimization model of the split steering trapezoid mechanism. In this investigation, a hybrid genetic algorithm is developed to minimize the steering error and the corresponding optimum design parameters. The selected design parameters are the bottom angle and the steering arm length of steering trapezoid mechanisms.
Technical Paper

Parameter Optimization of Anti-Roll Bar Based on Stiffness

2020-04-14
2020-01-0921
The anti-roll bar is an important structural component of the automobile, which can effectively prevent the automobile from rolling and improve the safety of the automobile during steering. In the design of the current anti-roll bar, the stiffness is determined by empirical or oversimplified mathematical models, often not reaching the optimal value. In this paper, eight parameters are used to determine the structure of the anti-roll bar. Combining the Deformation Energy theorem and Castigliano’s theorem, a mathematical model of the stiffness is established. The optimal solution and corresponding parameter values of the mathematical model are obtained by nonlinear programming and genetic algorithm. The influence of structural parameters on the anti-roll bar stiffness is analyzed, and the regular pattern of design is obtained. In addition, the finite element method is used to verify the stiffness solution model.
Technical Paper

A Non-Contact Overload Identification Method Based on Vehicle Dynamics

2019-04-02
2019-01-0490
The vehicle overload seriously jeopardizes traffic safety and affects traffic efficiency. At present, the static weighing station and weigh-in-motion station are both relatively fixed, so the detection efficiency is not high and the traffic efficiency is affected; the on-board dynamic weighing equipment is difficult to be popularized because of the problem of being deliberately damaged or not accepted by the purchaser. This paper proposes an efficient, accurate, non-contact vehicle overload identification method which can keep the road unimpeded. The method can detect the vehicle overload by the relative distance (as the characteristic distance) between the dynamic vehicle's marking line and the road surface. First, the dynamics model of the vehicle suspension is set up. Then, the dynamic characteristic distance of the traffic vehicle is detected from the image acquired by the calibrated camera based on computer vision and image recognition technology.
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

2018-04-03
2018-01-0582
The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

Energy-Harvesting Potential and Vehicle Dynamics Conflict Analysis under Harmonic and Random Road Excitations

2018-04-03
2018-01-0568
Energy has the worldwide concern since the World War. Recently, the energy harvesting technology has got more attraction in different fields and applications. Hence, in a world where energy becomes rare and expensive, even the small quantities are worth to be harvested where it can be exploited in different applications. Vehicle suspension is one of the vibration power dissipation sources in which the undesired vibration is dissipated into heat waste. Accordingly, the principal motivation of this study is exploitation the conflict between the potentially harvested power and vehicle dynamics in automotive suspension system induced by road irregularity. Therefore, in terms of RMS conflict diagrams, the conflict between the potential power and vehicle dynamics are sufficiently and comprehensively defined considering a vehicle speed of 20 m/s.
Technical Paper

The Analysis of the Stiffness-Damping Parameters of a H-Bahn Vehicle

2017-06-05
2017-01-1890
H-Bahn ("hanging railway") refers to the suspended, unmanned urban railway transportation system. Through the reasonable platform layout, H-Bahn can be easily integrated into the existing urban transit system. With the development of urban roads, the associated rail facilities can be conveniently disassembled, moved and expanded. The track beam, circuits, communication equipment, and sound insulation screen are all installed in a box-type track beam so that the system can achieve a high level of integration and intelligence. The carriage of the modern H-banh vehicle is connected with the bogies by two hanging devices. The vehicle is always running in the box-type track beam; therefore there are less possibilities of derailment. Consequently, the key work focuses on the running stability evaluation and curve negotiation performance analysis.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Suspension Performance and Energy Harvesting Property Study of a Novel Railway Vehicle Bogie with The Hydraulic-Electromagnetic Energy-Regenerative Shock Absorber

2017-03-28
2017-01-1483
Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
Technical Paper

The Effect Factors and Location Planning Method Study of a Novel Car-Sharing Network

2017-03-28
2017-01-0249
With the development of the Internet for vehicles, the Car-sharing has been developed rapidly in recent years. This paper focuses on the network programming and distribution for Car-sharing, which helps to clarify the characteristics and basic law of Car-sharing network development, as well as the main approaches to construct it. Firstly, by analyzing the effect factors and expanding ways of Car-sharing network, characteristics of the development of Car-sharing industry and its network, as well as main Car-sharing users and services, the influence factors of Car-sharing demand and the main demand points in a city are summarized. Secondly, in order to better evaluate the network programming and distribution for Car-sharing, this paper proposes an optimization decision method of the car-sharing network planning by evaluating the possible alternatives in a same scale. The assessment index of Car-sharing network planning is constructed.
Technical Paper

Study on Commercial Vehicle ECR Thermal Management System

2016-09-18
2016-01-1935
With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
Technical Paper

Simulation Study on Vehicle Road Performance with Hydraulic Electromagnetic Energy-Regenerative Shock Absorber

2016-04-05
2016-01-1550
This paper presents a novel application of hydraulic electromagnetic energy-regenerative shock absorber (HESA) into commercial vehicle suspension system and vehicle road performance are simulated by the evaluating indexes (e.g. root-mean-square values of vertical acceleration of sprung mass, dynamic tire-ground contact force, suspension deflection and harvested power; maximum values of pitch angle and roll angle). Firstly, the configuration and working principle of HESA are introduced. Then, the damping characteristics of HESA and the seven-degrees-of-freedom vehicle dynamics were modeled respectively before deriving the dynamic characteristics of a vehicle equipped with HESA. The control current is fixed at 7A to match the similar damping effect of traditional damper on the basis of energy conversion method of nonlinear shock absorber.
Technical Paper

Study on the Thermal-Magnetic Coupling Characteristics of Integrated Eddy Current Retarder

2016-04-05
2016-01-0185
As an auxiliary braking device of heavy-duty vehicle, eddy current retarder can reduce the brake failure due to the high temperature of the main brake. Nevertheless, the eddy current retarder will generate high temperature locally during the working process of it, leading to the decline of the brake power. The study on the heating characteristics of eddy current retarder is advantageous to the layout and parameter design of the liquid cooling channel of the retarder body and prolong the effective time of the auxiliary brake. In this research, a new kind of integrated eddy current retarder has been established. The thermal-magnetic coupling characteristics are studied and the laws of variation in torque output of auxiliary brake affected by the body temperature of retarder are analyzed. The boundary conditions are provided for the construction of the cooling channel. Firstly, the distribution of magnetic field and the characteristics of eddy current are simulated.
Technical Paper

The Combined Braking Energy Management Strategy to Maximize Energy Recovery

2016-04-05
2016-01-0453
Eddy current retarder (ECR) shares a large market of auxiliary brakes in China, but shortcomings of the short continuous braking time and the high additional energy consumption are also obvious. The propose of combined braking partakes the braking torque of ECR. However, the existed serial-parallel braking strategy could hardly balance well the relationship between the braking stability and the energy recovery efficiency. This research puts forward an energy management strategy of combined braking system which aims to maximize energy recovery while ensure the brake stability. The motor speed, the braking request and the state of charge (SoC) of the storage module are analyzed synthetically to calculate the reasonable braking torque distribution proportion. And the recovered energy is priority for using in the braking unit to reduce the additional energy consumption in this strategy.
Journal Article

Design of the Linear Quadratic Control Strategy and the Closed-Loop System for the Active Four-Wheel-Steering Vehicle

2015-05-05
2015-01-9107
In the field of active safety, the active four-wheel-steering (4WS) system seems to be an attractive alternative and an effective tool to improve the vehicles' handling stability in lane-keeping control performance. Under normal using condition, the vehicle's lateral acceleration is comparatively small, and the mathematic relationship between the small side force excitation and the small slip angle of the tire is in the linear region. Furthermore, the effects of roll, heave, and pitch motions are neglected as well as the dynamic characteristics of the tires and suspension system in this work. Therefore, the linear quadratic control (LQC) theory is used to ensure that the output of the 4WS control system can keep track of the desired yaw rate and zero-sideslip-angle response can also be realized at the same time.
Technical Paper

Simulation based Evaluation of the Electro-Hydraulic Energy-Harvesting Suspension (EHEHS) for Off-Highway Vehicles

2015-04-14
2015-01-1494
Nowadays, off-highway vehicles enjoyed a significant status in the national defense and civil construction. There is no doubt that the working conditions of off-highways are quite different from the conventional passenger cars, hence, their suspensions are particularly designed. Since the hydro-pneumatic suspension technology is maturely applied in engineering machinery, this paper presents a concept for a novel energy-harvesting device, which is applied in off-highway vehicles based on hydro-pneumatic suspension, namely, electro-hydraulic energy-harvesting suspension (EHEHS). The EHEHS took the fundamental of mechanism-electronic-hydraulic system, which consisted the following elements: a cylinder, 2 check valves, a hydro-pneumatic spring, a hydraulic motor, a DC motor, a processing circuit and a battery. In the EHEHS system, the cylinder is used to transmit the vibration energy into hydraulic energy, which is stored in hydro-pneumatic spring.
Technical Paper

Development of an Integrated Braking Control Strategy for Commercial Vehicles

2015-01-14
2015-26-0080
Commercial vehicle plays an important role during transportation process under the demand of high speed, convenience and efficiency. So improving active safety of commercial vehicle has become a research topic. Due to the fact that braking characteristic is the basic and most closely related to safe driving of vehicle's performances, this paper aims to improve the braking performance by researching into an integrated control method based on the mature ABS products. Firstly, a strategy which gives priority to ABS and differential yaw moment control, complementary with the hydraulic active suspension control is proposed. In comparison with ABS, the combined control of brake system and suspension system is designed not only for preventing wheels lock. But the directional control to avoid roll or spin is more focused on. Then in order to run the novel method correctly, the controlled variables and evaluation criteria are illustrated briefly.
X