Refine Your Search

Topic

Author

Search Results

Technical Paper

Hydrogen Engine Insights: A Comprehensive Experimental Examination of Port Fuel Injection and Direct Injection

2024-04-09
2024-01-2611
The environmental and sustainable energy concerns in transport are being addressed through the decarbonisation path and the potential of hydrogen as a zero-carbon alternative fuel. Using hydrogen to replace fossil fuels in various internal combustion engines shows promise in enhancing efficiency and achieving carbon-neutral outcomes. This study presents an experimental investigation of hydrogen (H2) combustion and engine performance in a boosted spark ignition (SI) engine. The H2 engine incorporates both port fuel injection (PFI) and direct injection (DI) hydrogen fuel systems, capable of injecting hydrogen at pressures of up to 4000 kPa in the DI system and 1000 kPa in the PFI operations. This setup enables a direct comparison of the performance and emissions of the PFI and DI operations. The study involves varying the relative air-to-hydrogen ratio (λ) at different speeds to explore combustion and engine limits for categorising and optimising operational regions.
Technical Paper

Comparison of Conventional vs Reactivity-Controlled Compression Ignition Diesel-Hythane Dual-Fuel Combustion: An Investigation on Engine Performance and Emissions at Low-Load

2023-06-26
2023-01-1203
The exponential rise in greenhouse gas (GHG) emissions into the environment is one of the major concerns of international organisations and governments. As a result, lowering carbon dioxide (CO2) and methane (CH4) emissions has become a priority across a wide range of industries, including transportation sector, which is recognised as one of the major sources of these emissions. Therefore, renewable energy carriers and powertrain technologies, such as the use of alternative fuels and combustion modes in internal combustion engines, are required. Dual-fuel operation with high substitution ratios using low carbon and more sustainable fuels can be an effective short-term solution. Hythane, a blend of 20% hydrogen and 80% methane, could be a potential solution to this problem.
Technical Paper

A Rule-Based Energy Management Strategy for a Light-Duty Commercial P2 Hybrid Electric Vehicle Optimized by Dynamic Programming

2021-04-06
2021-01-0722
An appropriate energy management strategy can further reduce the fuel consumption of P2 hybrid electric vehicles (HEV) with simple hybrid configuration and low cost. The rule-based real-time energy management strategy dominates the energy management strategies utilized in commercial HEVs, due to its robustness and low computational loads. However, its performance is sensitive to the setting of parameters and control actions. To further improve the fuel economy of a P2 HEV, the energy management strategy of the HEV has been re-designed based on the globally optimal control theory. An optimization strategy model based on the longitudinal dynamics of the vehicle and Bellman’s dynamic programming algorithm was established in this research and an optimal power split in the dual power sources including an internal combustion engine (ICE) and an electric machine at a given driving cycle was used as a benchmark for the development of the rule-based energy management strategy.
Technical Paper

A Comparison Study on the Performance of the Multi-Stroke Cycle SI Engine under Low Load

2021-04-06
2021-01-0530
Pumping Mean Effective Pressure (PMEP) is the main factor limiting the improvement of thermal efficiency in a spark-ignition (SI) engine under low load. One of the ways to reduce the pumping loss under low load is to use Cylinder DeActivation (CDA). The CDA aims at reducing the firing density (FD) of the SI engine under low load operation and increasing the mass of air-fuel mixture within one cycle in one cylinder to reduce the throttling effect and further reducing the PMEP. The multi-stroke cycles can also reduce the firing density of the SI engine after some certain reasonable design, which is feasible to improve the thermal efficiency of the engine under low load in theory. The research was carried out on a calibrated four-cylinder SI engine simulation platform. The thermal efficiency improvements of the 6-stroke cycle and 8-stroke cycle to the engine performance were studied compared with the traditional 4-stroke cycle under low load conditions.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

The effective use of ethanol for greenhouse gas emissions reduction in a diesel engine

2020-01-13
2019-36-0157
Regulations have been established for the monitoring and reporting of greenhouse gas (GHG) emissions and fuel consumption from the transport sector. Low carbon fuels combined with new powertrain technologies have the potential to provide significant reductions in GHG emissions while decreasing the dependence on fossil fuel. In this study, a lean-burn ethanol-diesel dual-fuel combustion strategy has been used as means to improve upon the efficiency and emissions of a conventional diesel engine. Experiments have been performed on a 2.0 dm3 single cylinder heavy-duty engine equipped with port fuel injection of ethanol and a high-pressure common rail diesel injection system. Exhaust emissions and fuel consumption have been measured at a constant engine speed of 1200 rpm and various steady-state loads between 0.3 and 2.4 MPa net indicated mean effective pressure (IMEP).
Technical Paper

Effect of a split-injections strategy on the atomisation rate for charge stratification using a high pressure gasoline multi-hole injector

2019-12-19
2019-01-2248
Some of the challenges of optimising the gasoline direct-injection engines are achieving high rates of atomisation and evaporation of fuel sprays for effective fuel-air mixture formation. This is especially important for the stratified charge when operating under cold-start and part-load conditions. Poorly mixed charge results in the increased production of total Hydrocarbons and Nitrogen Oxides. Many studies have previously focused on improving the spray characteristics of a single fuel injection strategy from direct-injection gasoline injectors, with fuel rail pressures of up to 20MPa. The current study focuses on a split injections strategy and its influence on the spray's structure, fuel-air mixing and atomisation rates. Short pulse widths in the range of 0.3ms to 0.8ms are employed. In particular, the effects of dwell times between the two injections on the second injection's spray characteristics are evaluated.
Technical Paper

Expansion of external EGR effective region and influence of dilution on boosted operation of a downsized turbocharged GDI engine

2019-12-19
2019-01-2252
Engine downsizing is an effective technology to lower automotive CO2 emissions. However, the high load low speed regions are plagued with knocking combustion that are usually overcome by retarding the ignition. This interferes with the efficiency gains due to very late combustion. This paper reports the use of Exhaust Gas Recirculation (EGR) on a Ford Ecoboost 1l downsized gasoline turbocharged direct injection (GTDI) engine to improve efficiency by optimising combustion phasing unlocked by the improved knock resistance with EGR dilution. Further ignition system upgrades are tested for impact towards further efficiency improvements. 75mJ (standard) and 120mJ (high energy) ignition systems were compared. The experimental results showed that the brake specific fuel consumption (BSFC) can be improved by 5.6% with EGR dilution at 25%. When considering combined effects of EGR and high energy ignition upon engine fuel economy, the BSFC gain improves to 7.9%.
Technical Paper

Experimental Studies of Gasoline Auxiliary Fueled Turbulent Jet Igniter at Different Speeds in Single Cylinder Engine

2019-09-09
2019-24-0105
Turbulent Jet Ignition (TJI) is a pre-chamber ignition system for an otherwise standard gasoline spark ignition engine. TJI works by injecting chemically active turbulent jets to initiate combustion in a premixed fuel/air mixture. The main advantage of TJI is its ability to ignite and burn, completely, very lean fuel/air mixtures in the main chamber charge. This occurs with a very fast burn rate due to the widely distributed ignition sites that consume the main charge rapidly. Rapid combustion of lean mixtures leads to lower exhaust emissions due to more complete combustion at a lower temperature. For this research, the effectiveness of the Mahle TJI system on combustion stability, lean limit and emissions in a single cylinder spark engine fueled with gasoline at different speeds was investigated. The combustion and heat release process was analyzed and the exhaust emissions were measured.
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Investigation of advanced valve timing strategies for efficient spark ignition ethanol operation

2018-09-03
2018-36-0147
Biofuels for internal combustion engines have been explored worldwide to reduce fossil fuel usage and mitigate greenhouse gas emissions. Additionally, increased spark ignition (SI) engine part load efficiency has been demanded by recent emission legislation for the same purposes. Considering theses aspects, this study investigates the use of non-conventional valve timing strategies in a 0.35 L four valve single cylinder test engine operating with anhydrous ethanol. The engine was equipped with a fully variable valve train system enabling independent valve timing and lift control. Conventional spark ignition operation with throttle load control (tSI) was tested as baseline. A second valve strategy using dethrottling via early intake valve closure (EIVC) was tested to access the possible pumping loss reduction. Two other strategies, negative valve overlap (NVO) and exhaust rebreathing (ER), were investigated as hot residual gas trapping strategies using EIVC as dethrottling technique.
Technical Paper

Study of Exhaust Re-Breathing Application on a DI SI Engine at Partial Load Operation

2018-09-03
2018-36-0129
Using Exhaust Gas Recycling (EGR) on internal combustion engines enables the reduction of emissions with a low or even no cost to the engine efficiency at part-load operation. The charge dilution with EGR can even increase the engine efficiency due to de-throttling and reduction of part load pumping losses. This experimental study proposed the use of late exhaust valve closure (LEVC) to achieve internal EGR (increased residual gas trapping). A naturally aspirated single cylinder direct injection spark ignition engine equipped with four electro-hydraulic actuated valves that enabled full valve timing and lift variation. Eight levels of positive valve overlap (PVO) with LEVC were used at the constant load of 6.0 bar IMEP and the speed of 1500 rpm. The results have shown that later exhaust valve closure (EVC) required greater intake pressures to maintain the engine load due to the higher burned gases content. Hence, lower pumping losses and thus higher indicated efficiency were obtained.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Exploring the NOx Reduction Potential of Miller Cycle and EGR on a HD Diesel Engine Operating at Full Load

2018-04-03
2018-01-0243
The reduction in nitrogen oxides (NOx) emissions from heavy-duty diesel engines requires the development of more advanced combustion and control technologies to minimize the total cost of ownership (TCO), which includes both the diesel fuel consumption and the aqueous urea solution used in the selective catalytic reduction (SCR) aftertreatment system. This drives an increased need for highly efficient and clean internal combustion engines. One promising combustion strategy that can curb NOx emissions with a low fuel consumption penalty is to simultaneously reduce the in-cylinder gas temperature and pressure. This can be achieved with Miller cycle and by lowering the in-cylinder oxygen concentration via exhaust gas recirculation (EGR). The combination of Miller cycle and EGR can enable a low TCO by minimizing both the diesel fuel and urea consumptions.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of the Direct Injection Dimethyl Ether Enabled Micro-Flame Ignited (MFI) Hybrid Combustion in a 4-Stroke Gasoline Engine

2018-04-03
2018-01-1247
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to improve gasoline engines’ efficiency and simultaneously achieve ultra-low NOx emissions. Two of the primary obstacles for applying CAI combustion are the control of combustion phasing and the maximum heat release rate. To solve these problems, dimethyl ether (DME) was directly injected into the cylinder to generate multi-point micro-flame through compression in order to manage the entire heat release of gasoline in the cylinder through port fuel injection, which is known as micro-flame ignited (MFI) hybrid combustion.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Effect of an ORC Waste Heat Recovery System on Diesel Engine Fuel Economy for Off-Highway Vehicles

2017-03-28
2017-01-0136
Modern heavy duty diesel engines can well extend the goal of 50% brake thermal efficiency by utilizing waste heat recovery (WHR) technologies. The effect of an ORC WHR system on engine brake specific fuel consumption (bsfc) is a compromise between the fuel penalty due to the higher exhaust backpressure and the additional power from the WHR system that is not attributed to fuel consumption. This work focuses on the fuel efficiency benefits of installing an ORC WHR system on a heavy duty diesel engine. A six cylinder, 7.25ℓ heavy duty diesel engine is employed to experimentally explore the effect of backpressure on fuel consumption. A zero-dimensional, detailed physical ORC model is utilized to predict ORC performance under design and off-design conditions.
Technical Paper

Experimental Comparison between Stratified Flame Ignition and Micro Flame Ignition in a Gasoline SI-CAI Hybrid Combustion Engine

2017-03-28
2017-01-0737
Controlled Auto-Ignition (CAI), also known as Homogeneous charge compression ignition (HCCI), has been the subject of extensive research because of their ability to providing simultaneous reduction in fuel consumption and NOx emissions in a gasoline engine. However, due to its limited operation range, combustion mode switching between CAI and spark ignition (SI) combustion is essential to cover the overall operational range of a gasoline engine for passenger car applications. Previous research has shown that the SI-CAI hybrid combustion has the potential to control the ignition timing and heat release process during both steady state and transient operations. However, it was found that the SI-CAI hybrid combustion process is often characterized with large cycle-to-cycle variations, due to the flame instability at high dilution conditions.
X