Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Prediction of Soot Mass and Particle Size in a High-boosted Diesel Engine using Large Eddy Simulation

2021-09-21
2021-01-1168
Soot mass production was investigated in high-boosted diesel engine tests by changing various operating parameters. A mixed timescale subgrid model of large eddy simulation (LES) was applied to simulate the detailed mixture formation, combustion and soot formation influenced by turbulence in diesel engine combustion. The combustion model used a direct integration approach with an explicit ordinary differential equation (ODE) solver and additional parallelization by OpenMP. Soot mass production within a computation cell was determined from a phenomenological soot formation model developed by WASEDA University. The model was combined with the LES code and included the following important steps: particle inception, in which naphthalene was assumed to grow irreversibly to form soot; surface growth with the addition of C2H2; surface oxidation due to OH radicals and O2 attack; particle coagulation; and particle agglomeration.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Technical Paper

A Numerical Study on the Effects of FAME Blends on Diesel Spray and Soot Formation by Using KIVA3V Code Including Detailed Kinetics and Phenomenological Soot Formation Models

2014-10-13
2014-01-2653
The objective of the present research was to analyze the effects of using oxygenated fuels (FAMEs or biodiesel fuels) on injected fuel spray and soot formation. A 3-D numerical study which using the KIVA-3V code with modified chemical and physical models was conducted. The large-eddy simulation (LES) model and KH-RT model were used to simulate fuel spray characteristics. To predict soot formation processes, a model for predicting gas-phase polycyclic aromatic hydrocarbons (PAHs) precursor formation was coupled with a detailed phenomenological particle formation model that included soot nucleation from the precursors, surface growth/oxidation and particle coagulation. The calculated liquid spray penetration results for all fuels agreed well with the measured data. The spray measurements were conducted using a constant volume chamber (CVC), which can simulate the ambient temperature and density under real engine conditions.
Journal Article

A Numerical Study of the Effects of FAME Blends on Diesel Combustion and Emissions Characteristics Using a 3-D CFD Code Combined with Detailed Kinetics and Phenomenological Soot Formation Models

2013-10-14
2013-01-2689
The objective of the present research is to analyze the effects of using oxygenated fuels (FAMEs) on diesel engine combustion and emission (NOx and soot). We studied methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many types of biodiesels. Engine tests and numerical simulations were performed for 100% MO (MO100), 40% MO blended with JIS#2 diesel (MO40) and JIS#2 diesel (D100). The effects of MO on diesel combustion and emission characteristics were studied under engine operating conditions typically encountered in passenger car diesel engines, focusing on important parameters such as pilot injection, injection pressure and exhaust gas recirculation (EGR) rate. We used a diesel engine complying with the EURO4 emissions regulation, having a displacement of 2.2 L for passenger car applications. In engine tests comparing MO with diesel fuel, no effect on engine combustion pressure was observed for all conditions tested.
X