Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effects of Multiple Injectors on Spray Characteristics and Efficiency in Internal Combustion Engines

2021-04-06
2021-01-0501
High-pressure internal combustion engines promise high efficiency, but a proper injection strategy to minimize heat losses and pollutant emissions remain a challenge. Previous studies have concluded that two injectors, placed at the piston bowl's rim, simultaneously improve the mixing and reduce the heat losses. The two-injector configuration further improves air utilization while keeping hot zones away from the cylinder walls. This study investigates how the two-injector concept delivers even higher efficiency by providing additional control of spray -and injection angles. Three-dimensional Reynolds-averaged Navier-Stokes simulations examined several umbrella angles, spray-to-spray angles, and injection orientations by comparing the two-injector cases with a reference one-injector case. The study focused on heat transfer reduction, where the two-injector approach reduces the heat transfer losses by up to 14.3 % compared to the reference case.
Technical Paper

Optical Diagnostics of Pre-Chamber Combustion with Flat and Bowl-In Piston Combustion Chamber

2021-04-06
2021-01-0528
Pre-chamber Combustion (PCC) extends the lean operation limit operation of spark ignition (SI) engines, thus it has been of interest for researchers as a pathway for increased efficiency and reduced emissions. Optical diagnostic techniques are essential to understand the combustion process, but the engine components such as the piston geometry, are often different from real engines to maximize the optical access. In this study, ignition and subsequent main chamber combustion are compared in an optically accessible PCC engine equipped with a “flat” and a real engine-like “bowl” piston geometry. An active fueled narrow throat pre-chamber was used as the ignition source of the charge in the main-chamber, and both chambers were fueled with methane. Three pre-chamber fuel effective mean pressure (FuelMEP) ratios (PCFR) namely 6%, 9% and 11% of the total amount of fuel were tested at two global excess air ratios (λ) at values of 1.8 and 2.0.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Journal Article

Study on the Pre-Chamber Fueling Ratio Effect on the Main Chamber Combustion Using Simultaneous PLIF and OH* Chemiluminescence Imaging

2020-09-15
2020-01-2024
Pre-chamber combustion (PCC) enables leaner air-fuel ratio operation by improving its ignitability and extending flammability limit, and consequently, offers better thermal efficiency than conventional spark ignition operation. The geometry and fuel concentration of the pre-chamber (PC) is one of the major parameters that affect overall performance. To understand the dynamics of the PCC in practical engine conditions, this study focused on (i) correlation of the events in the main chamber (MC) with the measured in-cylinder pressure traces and, (ii) the effect of fuel concentration on the MC combustion characteristics using laser diagnostics. We performed simultaneous acetone planar laser-induced fluorescence (PLIF) from the side, and OH* chemiluminescence imaging from the bottom in a heavy-duty optical engine. Two different PC Fueling Ratios (PCFR, the ratio of PC fuel to the total fuel), 7%, and 13%, were investigated.
Journal Article

Computational Study of a Multiple Fuel Injector Concept under High-Load and High-EGR Conditions

2020-09-15
2020-01-2034
A new concept utilizing multiple fuel injectors was proven effective at reducing heat transfer losses by directing spray plumes further away from the combustion chamber walls. In this concept, two injectors are mounted close to the rim of the piston bowl and point in opposite directions to generate swirling in-cylinder bulk motion. Moreover, a new flat-bowl piston design was also proposed in combination with the multiple fuel injectors for even larger improvements in thermal efficiency. However, all tests were performed at low-to-medium load conditions with no significant EGR. Modern engine concepts, such as the double compression-expansion engine (DCEE), have demonstrated higher thermal efficiency when operated at high-load conditions with a large amount of EGR for NOx control. Thus, this study aims to assess the effectiveness of the multiple-fuel-injector system under such conditions. In this study, a number of 3-D CFD simulations are performed using the RANS technique in CONVERGE.
Technical Paper

Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry

2020-04-14
2020-01-0825
Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio.
Technical Paper

Isobaric Combustion for High Efficiency in an Optical Diesel Engine

2020-04-14
2020-01-0301
Isobaric combustion has been proven a promising strategy for high efficiency as well as low nitrogen oxides emissions, particularly in heavy-duty Diesel engines. Previous single-cylinder research engine experiments have, however, shown high soot levels when operating isobaric combustion. The combustion itself and the emissions formation with this combustion mode are not well understood due to the complexity of multiple injections strategy. Therefore, experiments with an equivalent heavy-duty Diesel optical engine were performed in this study. Three different cases were compared, an isochoric heat release case and two isobaric heat release cases. One of the isobaric cases was boosted to reach the maximum in-cylinder pressure of the isochoric one. The second isobaric case kept the same boost levels as the isochoric case. Results showed that in the isobaric cases, liquid fuel was injected into burning gases. This resulted in shorter ignition delays and thus a poor mixing level.
Technical Paper

Optical Study on the Fuel Spray Characteristics of the Four-Consecutive-Injections Strategy Used in High-Pressure Isobaric Combustion

2020-04-14
2020-01-1129
High-pressure isobaric combustion used in the double compression expansion engine (DCEE) concept was proposed to obtain higher engine brake thermal efficiency than the conventional diesel engine. Experiments on the metal engines showed that four consecutive injections delivered by a single injector can achieve isobaric combustion. Improved understanding of the detailed fuel-air mixing with multiple consecutive injections is needed to optimize the isobaric combustion and reduce engine emissions. In this study, we explored the fuel spray characteristics of the four-consecutive-injections strategy using high-speed imaging with background illumination and fuel-tracer planar laser-induced fluorescence (PLIF) imaging in a heavy-duty optical engine under non-reactive conditions. Toluene of 2% by volume was added to the n-heptane and served as the tracer. The fourth harmonic of a 10 Hz Nd:YAG laser was applied for the excitation of toluene.
Technical Paper

Fuel Flexibility Study of a Compression Ignition Engine at High Loads

2019-12-19
2019-01-2193
Engine experiments were performed on a single-cylinder heavy-duty engine at relatively high loads to investigate the regions where the combustion characteristics are unchanged regardless of the fuel octane number. Primary Reference Fuels (PRFs) and three different commercial fuels with RON values ranging from 0 to 100 were tested in this study. A sweep of net indicated mean effective pressure (IMEPNet) of 5 to 20 bar, absolute intake pressure of 1.5 to 2.8 bar, exhaust gas recirculation (EGR) of 0 to 40%, and fuel injection pressure of 700 to 1400 bar were performed to investigate the combustion characteristics, ignition delay time, combustion duration, efficiency, and emissions. At the highest load point (IMEPNet = 20 bar), all the fuels burn as in conventional diesel combustion. Despite the wide range of octane numbers, all fuels had similar ignition delay time, combustion duration, indicated efficiency, and emissions at 10 to 20 bar IMEPNet.
Technical Paper

Novel Geometry Reaching High Efficiency for Multiple Injector Concepts

2019-04-02
2019-01-0246
Heat losses are known to decrease the efficiency of CI engines largely. Here, multiple injectors have been suggested to shrink these losses through reduction of spray wall impingement. Studies on multiple injectors have proven the concept’s heat transfer reduction but also highlighted the difficulty of using a standard piston bowl. This study proposes a two-injector concept combined with a flat bowl to reduce heat losses further. To change the spray pattern, the two injectors are injecting in a swirling motion while placed at the rim of the bowl. Four injection timings have been investigated using Reynolds-Averaged Navier-Stokes simulations. This computational method quantified the amount of heat loss reduction possible. A conventional single injector concept is compared to two injector concepts with a standard and flat bowl. A Double Compression Expansion Engine (DCEE) concept, based on a modified Volvo D13 single-cylinder engine, was the base for all simulations.
Technical Paper

Variable Compression Ratio (VCR) Piston - Design Study

2019-04-02
2019-01-0243
Variable compression ratio (VCR) technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. This paper presents a design of hydraulically actuated piston based on the VCR piston proposed by the British Internal Combustion Engine Research Institute (BICERI). In this design, the compression height of the piston automatically changes in response to engine cylinder pressure by controlling the lubrication oil flow via valves in the piston. In addition, numerical models including piston kinetic model, oil hydraulic model, compression ratio model and etc., have been established to evaluate the piston properties. The oil flow characteristics between two chambers in VCR piston have been investigated and the response behaviors of VCR engine and normal engine, such as compression pressure and peak cylinder pressure, are compared at different engine loads.
Technical Paper

The Physical and Chemical Effects of Fuel on Gasoline Compression Ignition

2019-04-02
2019-01-1150
In the engine community, gasoline compression ignition (GCI) engines are at the forefront of research and efforts are being taken to commercialize an optimized GCI engine in the near future. GCI engines are operated typically at Partially Premixed Combustion (PPC) mode as it offers better control of combustion with improved combustion stability. While the transition in combustion homogeneity from convectional Compression Ignition (CI) to Homogenized Charge Compression Ignition (HCCI) combustion via PPC has been comprehensively investigated, the physical and chemical effects of fuel on GCI are rarely reported at different combustion modes. Therefore, in this study, the effect of physical and chemical properties of fuels on GCI is investigated. In-order to investigate the reported problem, low octane gasoline fuels with same RON = 70 but different physical properties and sensitivity (S) are chosen.
Technical Paper

Isobaric Combustion: A Potential Path to High Efficiency, in Combination with the Double Compression Expansion Engine (DCEE) Concept

2019-01-15
2019-01-0085
The efficiency of an internal combustion engine is highly dependent on the peak pressure at which the engine operates. A new compound engine concept, the double compression expansion engine (DCEE), utilizes a two-stage compression and expansion cycle to reach ultrahigh efficiencies. This engine takes advantage of its high-integrity structure, which is adapted to high pressures, and the peak motored pressure reaches up to 300 bar. However, this makes the use of conventional combustion cycles, such as the Seiliger-Sabathe (mixed) or Otto (isochoric) cycles, not feasible as they involve a further pressure rise due to combustion. This study investigates the concept of isobaric combustion at relatively high peak pressures and compares this concept with traditional diesel combustion cycles in terms of efficiency and emissions. Multiple consecutive injections through a single injector are used for controlling the heat release rate profile to achieve isobaric heat addition.
Technical Paper

Compression Ignition of Low Octane Gasoline under Partially Premixed Combustion Mode

2018-09-10
2018-01-1797
Partially premixed combustion (PPC) is an operating mode that lies between the conventional compression ignition (CI) mode and homogeneous charge compression ignition (HCCI) mode. The combustion in this mixed mode is complex as it is neither diffusion-controlled (CI mode) nor governed solely by chemical kinetics (HCCI mode). In this study, CFD simulations were performed to evaluate flame index, which distinguishes between zones having a premixed flame and non-premixed flame. Experiments performed in the optical engine supplied data to validate the model. In order to realize PPC, the start of injection (SOI) was fixed at −40 CAD (aTDC) so that a required ignition delay is created to premix air/fuel mixture. The reference operating point was selected to be with 3 bar IMEP and 1200 rpm. Naphtha with a RON of 77 and its corresponding PRF surrogate were tested. The simulations captured the general trends observed in the experiments well.
Technical Paper

Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

2018-04-03
2018-01-0896
Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NOX) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at −180 CAD (aTDC) and −30 CAD (aTDC), respectively.
Technical Paper

Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

2018-04-03
2018-01-0890
The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power simulations. A parametric study on piston insulation, convection heat transfer multiplier, expander head insulation, insulation of connecting pipes, ports and tanks, and the expander intake valve lift profiles was conducted to understand the critical parameters that affected engine efficiency. The simulations were constrained to a constant peak cylinder pressure of 300 bar, and a fixed combustion phasing. The results from this study would be useful in making technology choices that will help realise the potential of this engine concept.
Technical Paper

Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

2017-10-08
2017-01-2403
In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
Technical Paper

Fuel Effect on Combustion Stratification in Partially Premixed Combustion

2017-09-04
2017-24-0089
The literature study on PPC in optical engine reveals investigations on OH chemiluminescence and combustion stratification. So far, mostly PRF fuel is studied and it is worthwhile to examine the effect of fuel properties on PPC. Therefore, in this work, fuel having different octane rating and physical properties are selected and PPC is studied in an optical engine. The fuels considered in this study are diesel, heavy naphtha, light naphtha and their corresponding surrogates such as heptane, PRF50 and PRF65 respectively. Without EGR (Intake O2 = 21%), these fuels are tested at an engine speed of 1200 rpm, fuel injection pressure of 800 bar and pressure at TDC = 35 bar. SOI is changed from late to early fuel injection timings to study PPC and the shift in combustion regime from CI to PPC is explored for all fuels. An increased understanding on the effect of fuel octane number, physical properties and chemical composition on combustion and emission formation is obtained.
Technical Paper

Influence of Injection Timing on Exhaust Particulate Matter Emissions of Gasoline in HCCI and PPC

2016-10-17
2016-01-2300
In order to reduce nitrogen oxides (NOx) and soot emissions while maintaining high thermal efficiency, more advanced combustion concepts have been developed over the years, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), as possible combustion processes in commercial engines. Compared to HCCI, PPC has advantages of lower unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions; however, due to increased fuel stratifications, soot emissions can be a challenge when adding Exhaust-Gas Recirculation (EGR) gas. The current work presents particle size distribution measurements performed from HCCI-like combustion with very early (120 CAD BTDC) to PPC combustion with late injection timing (11 CAD BTDC) at two intake oxygen rates, 21% and 15% respectively. Particle size distributions were measured using a differential mobility spectrometer DMS500.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
X