Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental Comparison of Different Cycle-Based Methodologies for the INDICATING in Hydrogen-Fueled Internal Combustion Engines

2024-04-09
2024-01-2834
High cycle-to-cycle variations (CTCV) in a Hydrogen-Fueled Internal Combustion Engine (H2-ICE), especially in the lean-burn condition, not only lower the engine’s efficiency but also increase emissions and torque variations. High CTCV are mainly due to the variations in: mixture motion within the cylinder at the time of spark, amount of air and fuel fed to the cylinder, and mixing of the fresh mixture and residual gases within the cylinder during each cycle. In this article, multiple cycle-based methodologies were compared and analyzed specifically for H2-ICEs based on systematic experimentation. The experimental test campaign was performed on a Port Fuel Injection (PFI) H2-ICE designed by PUNCH Torino and data is processed with MATLAB. A MATLAB code is also proposed as a tool for comparing multiple methodologies for the analysis of CTCV specifically for H2-ICE.
Technical Paper

A Three-Way Catalyst Model for a Bio-Methane Heavy-Duty Engine: Characterization at Different Lambda

2024-04-09
2024-01-2084
Given the spread of natural gas engines in low-term toward decarbonization and the growing interest in gaseous mixtures as well as the use of hydrogen in Heavy-Duty (HD) engines, appropriate strategies are needed to maximize thermal efficiency and achieve near-zero emissions from these propulsor systems. In this context, some phenomena related to real-world driving operations, such as engine cut-off or misfire, can lead to inadequate control of the Air-to-Fuel ratio, key factor for Three-Way Catalyst (TWC) efficiency. Goal of the present research activity is to investigate the performance of a bio-methane-fueled HD engine and its Aftertreatment System (ATS), consisting of a Three-Way Catalyst, at different Air-to-Fuel ratio. An experimental test bench characterization, in different operating conditions of the engine workplan, was carried out to evaluate the catalyst reactivity to a defined pattern of the Air-to-Fuel ratio.
Technical Paper

Investigation of Combustion Characteristics of a Fuel Blend Consisting of Methanol and Ignition Improver, Compared to Diesel Fuel and Pure Methanol

2024-04-09
2024-01-2122
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression.
Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Experimental Investigation of Glycerol Derivatives as Low-Concentration Additives for Diesel Fuel

2023-08-28
2023-24-0095
The worldwide adoption of renewable energy mandates, together with the widespread utilization of biofuels has created a sharp increase in the production of biodiesel (fatty acid alkyl esters). As a consequence, the production of glycerol, the main by-product of the transesterification of fatty acids, has increased accordingly, which has led to an oversupply of that compound on the markets. Therefore, in order to increase the sustainability of the biodiesel industry, alternative uses for glycerol need to be explored and the production of fuel additives is a good example of the so-called glycerol valorization. The goal of this study is therefore to evaluate the suitability of a number of glycerol-derived compounds as diesel fuel additives. Moreover, this work concerns the assessment of low-concentration blends of those glycerol derivatives with diesel fuel, which are more likely to conform to the existing fuel standards and be used in unmodified engines.
Technical Paper

Experimental and Numerical Investigation of a Particle Filter Technology for NG Heavy-Duty Engines

2023-04-11
2023-01-0368
The forthcoming introduction of the EURO VII regulation requires urgent strategies and solutions for the reduction of sub-23 nm particle emissions. Although they have been historically considered as particulate matter-free, the high interest for Natural Gas (NG) Heavy-Duty engines in the transport sector, demands their compliance with the new proposed regulations. In order to obtain high conversion of gas pollutants and a strong abatement of the emitted particles, the use of Particle Filters in NG aftertreatment (CPF) in conjunction with the Three-Way Catalyst (TWC) may represent an attractive and feasible solution. Performances of a cordierite filter were explored through an extensive experimental campaign both in Steady-State conditions and during transient engine maneuvers that involved a whole analysis of the emitted particles in terms of number and mass.
Technical Paper

Comparative Analysis of Different Methodologies to Calculate Lambda (λ) Based on Extensive And systemic Experimentation on a Hydrogen Internal Combustion Engine

2023-04-11
2023-01-0340
Hydrogen Internal Combustion Engines (H2-ICEs) are subject to increased attention thanks to their extremely low criteria pollutant emission and near-zero CO2 tailpipe emissions. However, to further minimize exhaust emissions and increase the efficiency of a H2-ICE, it is important to carefully control the relative air-fuel ratio of operation, i.e. Lambda (λ), which will lead in turn to an optimal combustion process. The precise λ control mainly relies upon the methodology to calculate λ on board of the engine, where the availability of reliable sensors specifically-developed for hydrogen combustion is currently limited. In this article, a comparative analysis of different methodologies for the calculation of λ is performed, comparing four methodologies: exhaust gas analysis through a Spindt-Brettschneider approach (λEMI), raw Universal Exhaust Gas Oxygen (λR-UEGO), processed Universal Exhaust Gas Oxygen (λP-UEGO) and speed-density (λSD) outputs.
Journal Article

Fresh and Aged Organic Aerosol Emissions from Renewable Diesel-Like Fuels HVO and RME in a Heavy-Duty Compression Ignition Engine

2023-04-11
2023-01-0392
A modern diesel engine is a reliable and efficient mean of producing power. A way to reduce harmful exhaust and greenhouse gas (GHG) emissions and secure the sources of energy is to develop technology for an efficient diesel engine operation independent of fossil fuels. Renewable diesel fuels are compatible with diesel engines without any major modifications. Rapeseed oil methyl esters (RME) and other fatty acid methyl esters (FAME) are commonly used in low level blends with diesel. Lately, hydrotreated vegetable oil (HVO) produced from vegetable oil and waste fat has found its way into the automotive market, being approved for use in diesel engines by several leading vehicle manufacturers, either in its pure form or in a mixture with the fossil diesel to improve the overall environmental footprint. There is a lack of data on how renewable fuels change the semi-volatile organic fraction of exhaust emissions.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1093
An increasing need to lower greenhouse gas emissions, and so move away from fossil fuels like diesel and gasoline, has greatly increased the interest for methanol. Methanol can be produced from renewable sources and eliminate soot emissions from combustion engines [1]. Since compression ignition (CI) engines are used for the majority of commercial applications, research is intensifying into the use of methanol, as a replacement for diesel fuel, in CI engines. This includes work on dual-fuel set-ups, different fuel blends with methanol, ignition enhancers mixed with methanol, and partially premixed combustion (PPC) strategies with methanol. However, methanol is difficult to ignite, using compression alone, at low load conditions. The problem comes from methanol’s high octane number, low lower heating value and high heat of vaporization, which add up to a lot of heat being needed from the start to combust methanol [2].
Technical Paper

An Experimental Investigation of Directly Injected E85 Fuel in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1050
A commercially available fuel, E85, a blend of ~85% ethanol and ~15% gasoline, can be a viable substitute for fossil fuels in internal combustion engines in order to achieve a reduction of the greenhouse gas (GHG) emissions. Ethanol is traditionally made of biomass, which makes it a part of the food-feed-fuel competition. New processes that reuse waste products from other industries have recently been developed, making ethanol a renewable and sustainable second-generation fuel. So far, work on E85 has focused on spark ignition (SI) concepts due to high octane rating of this fuel. There is very little research on its application in CI engines. Alcohols are known for low soot particle emissions, which gives them an advantage in the NOx-soot trade-off of the compression ignition (CI) concept.
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

Review and Assessment of the Material’s Compatibility for Rubbers and Elastomers in Hydrogen Internal Combustion Engines

2022-03-29
2022-01-0331
Hydrogen Internal Combustion Engines (H2-ICEs) are being investigated due to their minimal criteria pollutant and zero CO2 tailpipe emissions. However, oil filters and non-hot joint gaskets have rubber material that can be damaged and deteriorate due to direct or indirect exposure to the high temperature and high-pressure hydrogen in a H2-ICE. Thus, the effects on the properties of a rubber exposed to a hydrogen environment need to be reviewed. In this review paper, the transportation, chemical and mechanical properties of a rubber exposed directly or indirectly to high temperature and high-pressure hydrogen in a H2-ICE have been reviewed. The compatibility of rubber materials used in H2-ICE has been explored. The effects of high-pressure hydrogen on the transportation, chemical and mechanical properties of NBR and HNBR have been reviewed.
Technical Paper

Model Development of a CNG Active Pre-chamber Fuel Injection System

2021-09-05
2021-24-0090
Natural gas as an internal combustion engine fuel is taking a predominant role as a mid-term solution to pollution due to combustion driven human activities both in the energy and transport sectors. Engine researchers and manufacturers are in the process of investigating and improving strategies that decrease emissions and fuel consumption, without compromising engine performance and efficiency; active pre-chamber configurations are to be accounted for as one of these. A relatively small amount of fuel (up to 10 % of the total fuel-energy requirement) is introduced in the confined volume of the pre-chamber and forms a close-to-stoichiometric mixture with fresh charge that is introduced from the main combustion chamber during the compression stroke. After spark-ignition the products of this early stage of combustion can ignite ultra-lean mixtures (with λ up to 2) through the Turbulent Jet Ignition mechanism, hence reducing fuel consumption as well as noxious emissions such as NOx.
Technical Paper

Ethanol in a Light-Duty Dual Fuel Compression Ignition Engine: 3-D Analysis of the Combustion Process

2021-09-05
2021-24-0036
A wider use of biofuels in internal combustion engines could reduce the emissions of pollutants and greenhouse gases from the transport sector. In particular, due to stringent emission regulatory programs, compression ignition engine requires interventions aimed at reducing their polluting emissions. Ethanol, a low carbon fuel generally produced from biomass, is a promising alternative fuel applicable in compression ignition engines to reduce CO2 and soot emissions. In this paper, the application of a dual fuel diesel-ethanol configuration in a light-duty compression ignition engine has been numerically investigated. Ethanol is injected into the intake port, while diesel fuel is directly injected into the combustion chamber of the analyzed engine. CFD simulations have been carried out by means of the AVL Fire 3-D code. The operation at given engine load and speed has been simulated considering different diesel injection timings.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Investigation of the Effect of Glow Plugs on Low Load Gasoline PPC

2020-09-15
2020-01-2067
Low temperature combustion (LTC), is a promising alternative for combustion engines, because it combines the positive aspects of both CI and SI engines, high efficiency and low emissions. Another positive aspect of LTC is that it can operate with gasoline of different octane ratings. Still, higher octane gasolines prove to be difficult to operate at low load conditions leading to high combustion instability (COV) that leads also to high emissions. This drawback can be reduced by increasing the intake air temperature or increasing compression ratio, but it is not a viable strategy in conventional applications. For a diesel engine running under LTC conditions, a possibility is to use the existing hardware, glow plugs in this case, to increase the in-cylinder temperature at low loads and facilitate an improved combustion event.
Technical Paper

Influence of Injection Timing on Equivalence Ratio Stratification of Methanol and Isooctane in a Heavy-Duty Compression Ignition Engine

2020-09-15
2020-01-2069
CO2 is a greenhouse gas that is believed to be one of the main contributors to global warming. Recent studies show that a combination of methanol as a renewable fuel and advanced combustion concepts could be a promising future solution to alleviate this problem. However, high unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions can be stated as the main drawback in low load operations when using methanol under advanced combustion concepts. This issue can be mitigated by modifying the stratification of the local equivalence ratio to achieve a favorable level. The stratifications evolved, and the regimes that can simultaneously produce low emissions, and high combustion efficiency can be identified by sweeping the injection timing from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC). Understanding how the stratification of the local equivalence ratio for methanol evolves during the sweep is essential to gain these benefits.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
X