Refine Your Search

Topic

Author

Search Results

Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

Enhancing Ducted Fuel Injection Simulations: Assessment of RANS Turbulence Models Using LES Data

2024-04-09
2024-01-2689
Compression ignition engine-based transportation is nowadays looking for cleaner combustion solutions. Among them, ducted fuel injection (DFI) is emerging as a cutting-edge technology due to its potential to drastically curtail engine-out soot emissions. Although the DFI capability to abate soot formation has been demonstrated both in constant-volume and optical engine conditions, its optimization and understanding is still needed for its exploitation on series production engines. For this purpose, computational fluid dynamics (CFD) coupled with low-cost turbulence models, like RANS, can be a powerful tool, especially in the industrial context. However, it is often challenging to obtain reliable RANS-based CFD simulations, especially due to the high dependence of the various state-of-the-art turbulence models on the case study.
Technical Paper

A Numerical Model for the Virtual Calibration of a Highly Efficient Spark Ignition Engine

2023-09-29
2023-32-0059
Nowadays numerical simulations play a major role in the development of future sustainable powertrain thanks to their capability of investigating a wide spectrum of innovative technologies with times and costs significantly lower than a campaign of experimental tests. In such a framework, this paper aims to assess the predictive capabilities of an 1D-CFD engine model developed to support the design and the calibration of the innovative highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. As a matter of fact, the availability of a reliable simulation platform is crucial to achieve the project target of 47% peak indicating efficiency, by synergistically exploiting the combination of innovative in-cylinder charge motion, Miller cycle with high compression ratio, lean mixture with cooled Exhaust Gas Recirculation (EGR) and electrified turbocharger.
Technical Paper

Development of a Digital Twin to Support the Calibration of a Highly Efficient Spark Ignition Engine

2023-06-26
2023-01-1215
The role of numerical simulations in the development of innovative and sustainable powertrains is constantly growing thanks to their capabilities to significantly reduce the calibration efforts and to point out potential synergies among different technologies. In such a framework, this paper describes the development of a fully physical 1D-CFD engine model to support the calibration of the highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. The availability of a reliable simulation platform is essential to effectively exploit the combination of the several features introduced to achieve the project target of 47% peak gross indicated efficiency, such as SwumbleTM in-cylinder charge motion, Miller cycle combined with high Compression Ratio (CR), lean mixture exploiting cooled low pressure Exhaust Gas Recirculation (EGR) and electrified turbocharging.
Technical Paper

Numerical Assessment of Port Water Injection Capabilities to Reduce CO2 Emissions of a Lambda 1 Turbocharged Spark Ignition Engine

2023-04-11
2023-01-0181
The continuous tightening of CO2 emission targets along with the introduction of Real Driving Emissions (RDE) tests make Water Injection (WI) one of the most promising solutions to improve efficiency, enhance performance and reduce emissions of turbocharged high-performance Spark Ignition engines. This technology, by reducing local in-cylinder mixture temperature, enables higher compression ratios, optimal spark timing and stoichiometric combustion over the entire engine operating range. This research activity, therefore, aims to assess the benefits in terms of CO2 emission reduction of a Port Water Injection (PWI) system integrated in a Downsized Turbocharged Direct Injection Spark Ignition (T-DISI) Engine. In this regard, a 1D-CFD model of the engine capable to predict the impact of the water content on both the combustion process and the knock likelihood was firstly developed.
Technical Paper

A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

2023-04-11
2023-01-0224
Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits. Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems.
Technical Paper

An Analysis of Modern Vehicle Road Loads for Fleetwide Energy Consumption Modelling

2021-09-05
2021-24-0080
Passenger and light-duty vehicles have a high, and steadily increasing, greenhouse gas emissions footprint. Industry and regulators put effort into new, efficient propulsion configurations to reduce carbon dioxide (CO2) emissions from the transport sector. Energy savings are highly impacted not only by the driving style and needs of the driver, but also by the energy mix used during a trip, making the vehicle efficiency benchmarking increasingly complex. A potential way to curb the vehicle energy demand is by minimising the losses due to factors opposing the forward movement, such as vehicle inertia, tyre deformation, drivetrain, and vehicle air-drag. These losses are included in the vehicle road loads. In the present study, we derive representative road load values by employing open access vehicle information and combining physical and statistical methods. These values are then compared to the ones declared by the manufacturer, which are derived by physical coast down tests.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

Development of a Fully Physical Vehicle Model for Off-Line Powertrain Optimization: A Virtual Approach to Engine Calibration

2021-09-05
2021-24-0004
Nowadays control system development in the automotive industry is evolving rapidly due to several factors. On the one hand legislation tightening is asking for simultaneous emission reduction and efficiency increase, on the other hand the complexity of the powertrain is increasing due to the spreading of electrification. Those factors are pushing for strong design parallelization and frontloading, thus requiring engine calibration to be moved much earlier in the V-Cycle. In this context, this paper shows how, coupling well known physical 1D engine models featuring predictive combustion and emission models with a fully physical aftertreatment system model and longitudinal vehicle model, a powerful virtual test rig can be built. This virtual test rig can be used for powertrain virtual calibration activities with reduced requirement in terms of experimental data.
Technical Paper

On-Road Emissions of Euro 6d-TEMP Vehicles: Consequences of the Entry into Force of the RDE Regulation in Europe

2020-09-15
2020-01-2219
Human health and the environment are heavily impacted by air pollution. Air quality standards for Nitrogen dioxide (NO2) and particulate matter (PM) are commonly exceeded in Europe, particularly in urban areas with high density of traffic. Road transport contributed to 39% of NOx emissions, and 11% of PM emissions in the European Union (EU) in 2017. Measurements with Portable Emissions Measurement Systems (PEMS) showed that most Euro 5 and Euro 6b diesel vehicles emitted significantly more NOx on the road than their permissible limit in the laboratory type-approval test. In that context, EU Real Driving Emissions (EU-RDE) regulation aims at securing low on-road emissions of light duty vehicles under normal conditions of use. This paper assesses the tailpipe emissions performance of Euro 6d-TEMP gasoline and diesel passenger cars, type-approved after the entry into force of the RDE regulation in September 2017.
Technical Paper

Analysis of the Impact of the WLTP Procedure on CO2 Emissions of Passenger Cars

2019-10-07
2019-24-0240
Until 2017 in Europe the Type Approval (TA) procedure for light duty vehicles for the determination of pollutant emissions and fuel consumption was based on the New European Driving Cycle (NEDC), a test cycle performed on a chassis dynamometer. However several studies highlighted significant discrepancies in terms of CO2 emissions between the TA test and the real world, due to the limited representativeness of the test procedure. Therefore, the European authorities decided to introduce a new, up-to date, test procedure capable to closer represent real world driving conditions, called Worldwide Harmonized Light Vehicles Test Procedure (WLTP). This work aims to analyze the effects of the new WLTP on vehicle CO2 emissions through both experimental and simulation investigations on two different Euro 5 vehicles, a petrol and a diesel car, representatives of average European passenger cars.
Technical Paper

An Integrated Experimental and Numerical Methodology for Plug-In Hybrid Electric Vehicle 0D Modelling

2019-09-09
2019-24-0072
Governments worldwide are taking actions aiming to achieve a sustainable transportation system that can comprise of minimal pollutant and GHG emissions. Particular attention is given to the real-world emissions, i.e. to the emissions achieved in the real driving conditions, outside of a controlled testing environment. In this framework, interest in vehicle fleet electrification is rapidly growing, as it is seen as a way to simultaneously reduce pollutant and GHG emissions, while on the other hand OEMs are facing a significant increase in the number of tests which are needed to calibrate this new generation of electrified powertrains over a variety of different driving scenarios.
Technical Paper

The Effect of Post Injection Coupled with Extremely High Injection Pressure on Combustion Process and Emission Formation in an Off-Road Diesel Engine: A Numerical and Experimental Investigation

2019-09-09
2019-24-0092
In this paper, a numerical and experimental assessment of post injection potential for soot emissions mitigation in an off-road diesel engine is presented, with the aim of supporting hardware selection and engine calibration processes. As a case study, a prototype off-road 3.4 liters 4-cylinder diesel engine developed by Kohler Engines was selected. In order to explore the possibility to comply with Stage V emission standards without a dedicated aftertreatment for NOx, the engine was equipped with a low pressure cooled Exhaust Gas Recirculation (EGR), allowing high EGR rates (above 30%) even at high load. To enable the exploitation of such high EGR rates with acceptable soot penalties, a two-stage turbocharger and an extremely high-pressure fuel injection system (up to 3000 bar) were adopted. Moreover, post injections events were also exploited to further mitigate soot emissions with acceptable Brake Specific Fuel Consumption (BSFC) penalties.
Technical Paper

Experimental and Numerical Analysis of Latest Generation Diesel Aftertreatment Systems

2019-09-09
2019-24-0142
A comprehensive experimental and numerical analysis of two state-of-the-art diesel AfterTreatment Systems (ATS) for automotive applications is presented in this work. Both systems, designed to fulfill Euro 6 emissions regulations standards, consist of a closed-coupled Diesel Oxidation Catalyst (DOC) followed by a Selective Catalytic Reduction (SCR) catalyst coated on a Diesel Particulate Filter (DPF), also known as SCR on Filter (SCRoF or SCRF). While the two systems feature the same Urea Water Solution (UWS) injector, major differences could be observed in the UWS mixing device, which is placed upstream of the SCRoF, whose design represents a crucial challenge due to the severe flow uniformity and compact packaging requirements.
Technical Paper

Assessment through Numerical Simulation of the Impact of a 48 V Electric Supercharger on Performance and CO2 Emissions of a Gasoline Passenger Car

2019-04-02
2019-01-1284
The demanding CO2 emission targets are fostering the development of downsized, turbocharged and electrified engines. In this context, the need for high boost level at low engine speed requires the exploration of dual stage boosting systems. At the same time, the increased electrification level of the vehicles enables the usage of electrified boosting systems aiming to exploit the opportunities of high levels of electric power and energy available on-board. The aim of this work is therefore to evaluate, through numerical simulation, the impact of a 48 V electric supercharger (eSC) on vehicle performance and fuel consumption over different transients. The virtual test rig employed for the analysis integrates a 1D CFD fast running engine model representative of a 1.5 L state-of-the-art gasoline engine featuring an eSC in series with the main turbocharger, a dual voltage electric network (12 V + 48 V), a six-speed manual transmission and a vehicle representative of a B-SUV segment car.
Technical Paper

Application of Genetic Algorithm for the Calibration of the Kinetic Scheme of a Diesel Oxidation Catalyst Model

2018-09-10
2018-01-1762
In this work, a methodology for building and calibrating the kinetic scheme for the 1D CFD model of a zone-coated automotive Diesel Oxidation Catalyst (DOC) by means of a Genetic Algorithm (GA) approach is presented. The methodology consists of a preliminary experimental activity followed by a modelling, optimization and validation process. The tested aftertreatment component presents zone coating, with the front brick side covered with Zeolites in order to ensure hydrocarbons trapping at low temperature, and Platinum Group Metal (PGM), while the rear brick side presents an alumina washcoat with a different PGM loading. Reactor scale samples representative of each coating zone were tested on a Synthetic Gas Bench (SGB), to fully characterize the component’s behavior in terms of Light-off and hydrocarbons (HC) storage for a wide range of inlet feed compositions and temperatures, representative of engine-out conditions.
Technical Paper

An Integrated Methodology for 0D Map-Based Powertrain Modelling Applied to a 48 V Mild-Hybrid Diesel Passenger Car

2018-09-10
2018-01-1659
Nowadays, the 48 V vehicle architecture seems to be the perfect bridge between the 12 V system and the costly High Voltage (HV) electrification towards the crucial goal of CO2 and pollutants emissions reduction in combination with enhanced performance. However, this approach leads to an increased complexity in the interaction between different sub-systems targeting the optimization of the Energy Management System (EMS). Therefore, it becomes essential to perform a preliminary hardware assessment, exploring the interactions between the different components and quantifying the cost vs benefit trade-off. To this purpose, an integrated experimental/numerical methodology has been adopted: a comprehensive map-based Hybrid Electric Vehicle (HEV) model has been built, allowing the simulation of a variety of hybrid architectures, including both HV and 48 V systems.
Technical Paper

Numerical Assessment of the CO2 Reduction Potential of Variable Valve Actuation on a Light Duty Diesel Engine

2018-05-30
2018-37-0006
The increasingly demanding targets in terms of CO2 reduction lead to the adoption of engine technologies left so far for innovation. In diesel engines, some of the primary interests in adopting an advanced air management system, as Variable Valve Actuation (VVA), are related to Miller cycle enabling, and valve timing optimization. In this context, a numerical study was carried out in order to evaluate the impact of VVA on passenger car 4-cylinder diesel engine, 1.6 liters. The engine model, developed in GT-SUITE, features a predictive combustion model (DIPulse) and it is coupled with a fully predictive fuel injector model for the simulation of complex injection patterns. 3 different VVA techniques were evaluated, all targeting CO2 reduction: Late Exhaust Valve Opening (LEVO), Exhaust Phasing, and Late Inlet Valve Closure (LIVC) for enabling Miller cycle.
Technical Paper

Numerical Simulation of the Combustion Process of a High EGR, High Injection Pressure, Heavy Duty Diesel Engine

2017-09-04
2017-24-0009
To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
Technical Paper

A Fully Physical Correlation for Low Pressure EGR Control Linearization

2017-09-04
2017-24-0011
Nowadays stringent emission regulations are pushing towards new air management strategies like LP-EGR and HP/LP mix both for passenger car and heavy duty applications, increasing the engine control complexity. Within a project in collaboration between Kohler Engines EMEA, Politecnico di Torino, Ricardo and Denso to exploit the potential of EGR-Only technologies, a 3.4 liters KDI 3404 was equipped with a two stage turbocharging system, an extremely high pressure FIS and a low pressure EGR system. The LP-EGR system works in a closed loop control with an intake oxygen sensor actuating two valves: an EGR valve placed downstream of the EGR cooler that regulates the flow area of the bypass between the exhaust line and the intake line, and an exhaust flap to generate enough backpressure to recirculate the needed EGR rate to cut the NOx emission without a specific aftertreatment device.
X