Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Assessment of the 50th Hybrid III Responses in Blunt Rear Impacts to the Torso

2021-04-06
2021-01-0919
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively.
Technical Paper

Lumbar Spine Fractures in Undercarriage Impacts: Analysis of 1997-2015 NASS-CDS

2018-04-03
2018-01-0546
Objective: This is a descriptive study of the incidence of spinal injury by crash type using NASS-CDS. It provides an understanding of impacts to the undercarriage of the vehicle and injuries to the lumbar spine by reviewing electronic cases in NASS-CDS to determine crash circumstances for fractures of the lumbar spine with undercarriage impacts. Methods: 1997-2015 NASS-CDS was evaluated for serious injury (MAIS 3 + F) to front-seat occupants by seatbelt use and crash type in 1994+ MY vehicles. Undercarriage impacts were defined by GAD1 = U without a rollover. Serious injury was defined as MAIS 3 + F. Spinal injuries AIS 3+ were separated into cervical, thoracic and lumbar regions. Weighted data was determined using ratio weight. NASS-CDS electronic cases were downloaded from NHTSA with AIS 3+ lumbar spine injuries in undercarriage impacts. Results: There were 2,160 MAIS 3 + F injured occupants in undercarriage impacts. This was 0.23% of all serious injury.
Technical Paper

Abdominal Injuries in Frontal Crashes: Influence of Occupant Age and Seating Position

2018-04-03
2018-01-0535
Objective: This study investigated the incidence of abdominal injuries in frontal crashes by occupant age and seating position. It determined the risk for abdominal injury (AIS 2+) by organ and injury source. Methods: 1997-2015 NASS-CDS was analyzed to estimate the occurrence of abdominal injuries in non-ejected, belted occupants involved in frontal crashes. Vehicles were included with 1997+ model year (MY). The annual incidence and rate for different types of abdominal injury were estimated with standard errors. The sources for abdominal injury were determined. Results: 77.8% of occupants were drivers, 16.7% were right-front passengers and 5.4% were rear passengers. Rear passengers accounted for 77.1% of 8-11 year old (yo) and 17.2% of 12-17 yo group. The risk for moderate abdominal injury (MAIS 2 + abdo) was 0.30% ± 0.053% in drivers, 0.32% ± 0.086% in right-front passengers and 0.38% ± 0.063% in rear occupants.
Technical Paper

Rear-Seat Occupant Responses in NHTSA Rear Crash Tests

2018-04-03
2018-01-1330
This study analyzed FMVSS 301 rear impact tests with an instrumented rear-seat dummy. NHTSA conducted 15 FMVSS 301 rear crash tests with an instrumented and belted 50th Hybrid III dummy in the rear seat. In series 1, there were three repeat tests with the Jeep Liberty and two others, but no onboard camera view. In series 2, there were 8 tests with 2003-2005 MY (model year) vehicles that had rear head restraints. In series 3, there were two tests with 2004-2005 MY vehicles that did not have rear head restraints. There was an onboard camera view of the rear occupant in series 2 and 3. The dummy responses were evaluated and compared to relevant IARVs (injury assessment reference values). Based on the HRMD, the average height of the rear head restraints was 80.4 ± 3.4 cm (31.6″ ± 1.3″) above the H-point. In series 1, the delta V was 24.4 ± 2.0 km/h (15.2 ± 1.3 mph).
Technical Paper

Theories, Facts and Issues About Recliner and Track Release of Front Seats in Rear Impacts

2018-04-03
2018-01-1329
Objective: This study involved a number of different tests addressing theories for recliner and track release of front seats in rear impacts. It addresses the validity of the theories. Method: Several separate test series were conducted to address claims made about recliner and track release of front seats in rear impacts. The following theories were evaluated to see the validity of the issues: 1 Recliner teeth slipping with minimal damage to the teeth 2 Recliner teeth bypass by disengaging and re-engaging under load without damaging the teeth 3 Recliner shaft bending and torque releasing the recliners 4 Track release by heel loading 5 Track release with occupant load on the seat 6 Recliner handle rotation causing recliner release 7 Double pull body block tests Results: Many of the theories were found to be uncorroborated once actual test data was available to judge the merits of the issue raised. The laboratory tests were set-up to specifically address particular issues.
Journal Article

Improved Seat Belt Restraint Geometry for Frontal, Frontal Oblique and Rollover Incidents

2015-04-14
2015-01-0740
Throughout the first decade of the twenty first century, large improvements in occupant safety have been made in NASCAR®'s (National Association for Stock Car Auto Racing, Inc) race series. Enhancements to the occupant restraint system include the development and implementation of head and neck restraints, minimum performance requirements for belts and seats and the introduction of energy absorbing foam are a few highlights, among others. This paper discusses nineteen sled tests used to analyze hypothesized improvements to restraint system mounting geometry. The testing matrix included three sled acceleration profiles, three impact orientations, two Anthropomorphic Test Device (ATD) sizes as well as the restraint system design variables.
Technical Paper

Development of Head Injury Assessment Reference Values Based on NASA Injury Modeling

2011-11-07
2011-22-0003
NASA is developing a new crewed vehicle and desires a lower risk of injury compared to automotive or commercial aviation. Through an agreement with the National Association of Stock Car Auto Racing, Inc. (NASCAR®), an analysis of NASCAR impacts was performed to develop new injury assessment reference values (IARV) that may be more relevant to NASA's context of vehicle landing operations. Head IARVs associated with race car impacts were investigated by analyzing all NASCAR recorded impact data for the 2002-2008 race seasons. From the 4015 impact files, 274 impacts were selected for numerical simulation using a custom NASCAR restraint system and Hybrid III 50th percentile male Finite Element Model (FEM) in LS-DYNA. Head injury occurred in 27 of the 274 selected impacts, and all of the head injuries were mild concussions with or without brief loss of consciousness. The 247 noninjury impacts selected were representative of the range of crash dynamics present in the total set of impacts.
Journal Article

Basilar Skull Fractures by Crash Type and Injury Source

2011-04-12
2011-01-1126
Purpose: This study investigates NASS-CDS data on basilar skull fractures by crash type and injury source for various crash scenarios to understand the injury risks, injury mechanisms and contact sources. Methods: 1993-2008 NASS-CDS data was used to study basilar skull fractures in adult front occupants by crash type and injury source. Injury risks were determined using weighted data for occupants with known injury status in 1994+ model year vehicles. In-depth analysis was made of far-side occupants in side impacts and rear crashes using the NASS electronic cases. Results: Basilar skull fractures occur in 0.507 ± 0.059% of rollovers and 0.255 ± 0.025% of side impacts. The lowest risk is in rear impacts at 0.015 ± 0.007%. The most common contact source is the roof, side rails and header (39.0%) in rollovers, the B-pillar (25.8%) in side impacts and head restraint (55.3%) in rear crashes.
Technical Paper

Rear Impact Tests of Starcraft-Type Seats with Out-of-Position and In-Position Dummies

2011-04-12
2011-01-0272
Objective: This study analyzed available rear impact sled tests with Starcraft-type seats that use a diagonal belt behind the seatback. The study focused on neck responses for out-of-position (OOP) and in-position seated dummies. Methods: Thirteen rear sled tests were identified with out-of-position and in-position 5 th , 50 th and 95 th Hybrid III dummies in up to 47.6 mph rear delta Vs involving Starcraft-type seats. The tests were conducted at Ford, Exponent and CSE. Seven KARCO rear sled tests were found with in-position 5 th and 50 th Hybrid III dummies in 21.1-29.5 mph rear delta Vs involving Starcraft-type seats. In all of the in-position and one of the out-of-position series, comparable tests were run with production seats. Biomechanical responses of the dummies and test videos were analyzed.
Technical Paper

Fracture-Dislocation of the Thoracic Spine in Extension by Upright Seats in Severe Rear Crashes

2011-04-12
2011-01-0274
Purpose: This study presents cases of fracture-dislocation of the thoracic spine in extension during severe rear impacts. The mechanism of injury was investigated. Methods: Four crashes were investigated where a lap-shoulder-belted, front-seat occupant experienced fracture-dislocation of the thoracic spine and paraplegia in a severe rear impact. Police, investigator and medical records were reviewed, the vehicle was inspected and the seat detrimmed. Vehicle dynamics, occupant kinematics and injury mechanisms were determined in this case study. Results: Each case involved a lap-shoulder-belted occupant in a high retention seat with ≻1,700 Nm moment or ≻5.5 kN strength for rearward loading. The crashes were offset rear impacts with 40-56 km/h delta V involving under-ride or override by the impacting vehicle and yaw of the struck vehicle. In each case, the occupant's pelvis was restrained on the seat by the open perimeter frame of the seatback and lap belt.
Technical Paper

A Shoulder Belt Load Cell for Racing Cars

2011-04-12
2011-01-1102
This paper presents the rationale behind the development of a shoulder belt load cell suitable for application in racings cars. The design of the load cell and the operational parameters necessary for a research-quality measurement device for biomechanics research in racing car crashes and the performance of the device in sled tests are described.
Journal Article

Jaw Loading Response of Current ATDs

2009-04-20
2009-01-0388
Biomechanical surrogates are used in various forms to study head impact response in automotive applications and for assessing helmet performance. Surrogate headforms include those from the National Operating Committee on Standards for Athletic Equipment (NOCSAE) and the many variants of the Hybrid III. However, the response of these surrogates to loading at the chin and how that response may affect the loads transferred from the jaw to the rest of the head are unknown. To address part of that question, the current study compares the chin impact response performance of select human surrogates to that of the cadaver. A selection of Hybrid III and NOCSAE based surrogates with fixed and articulating jaws were tested under drop mass impact conditions that were used to describe post mortem human subject (PMHS) response to impacts at the chin (Craig et al., 2008). Results were compared to the PMHS response with cumulative variance technique (Rhule et al., 2002).
Journal Article

Vehicle and Occupant Responses in a Friction Trip Rollover Test

2009-04-20
2009-01-0830
Objective: A friction rollover test was conducted as part of a rollover sensing project. This study evaluates vehicle and occupant responses in the test. Methods: A flat dolly carried a Saab 9-3 sedan laterally, passenger-side leading to a release point at 42 km/h (26 mph) onto a high-friction surface. The vehicle was equipped with roll, pitch and yaw gyros near the center of gravity. Accelerometers were placed at the vehicle center tunnel, A-pillar near the roof, B-pillar near the sill, suspension sub-frame and wheels. Five off-board and two on-board cameras recorded kinematics. Hybrid III dummies were instrumented for head and chest acceleration and upper neck force and moment. Belt loads were measured. Results: The vehicle release caused the tires and then wheel rims to skid on the high-friction surface. The trip involved roll angular velocities >300 deg/s at 0.5 s and a far-side impact on the driver’s side roof at 0.94 s. The driver was inverted in the far-side, ground impact.
Technical Paper

Influence of Seating Position on Dummy Responses with ABTS Seats in Severe Rear Impacts

2009-04-20
2009-01-0250
Objective: This study analyzes rear sled tests with a 95th% male and 5th% female Hybrid III dummy in various seating positions on ABTS (All Belt to Seat) seats in severe rear impact tests. Dummy interactions with the deforming seatback and upper body extension around the seat frame are considered. Methods: The 1st series involved an open sled fixture with a Sebring ABTS seat at 30 mph rear delta V. A 95th% Hybrid III dummy was placed in four different seating positions: 1) normal, 2) leaning inboard, 3) leaning forward and inboard, and 4) leaning forward and outboard. The 2nd series used a 5th% female Hybrid III dummy in a Grand Voyager body buck at 25 mph rear delta V. The dummy was leaned forward and inboard on a LeSabre ABTS or Voyager seat. The 3rd series used a 5th% female Hybrid III dummy in an Explorer body buck at 26 mph rear delta V. The dummy was leaned forward and inboard on a Sebring ABTS or Explorer seat.
Technical Paper

Front-Seat Occupant Injuries in Rear Impacts: Analysis of the Seatback Incline Variable in NASS-CDS

2009-04-20
2009-01-1200
Objective: This study addresses severe injury risks in rear impacts for front-outboard occupants using the seatback incline variable in NASS-CDS. Methods: Severe injury risk (MAIS 4+F) was determined for front-seat occupants in rear impacts involving passenger cars from 1995–2006 NASS-CDS data. The risk of severe injury to front-seat occupants was determined as a function of the rotated position of the seatback and crash severity in three delta V ranges: <20, 20–30, >30 mph. The data was also analyzed for newer model vehicles (≥1997 MY) to assess changes with newer seats and head restraints. The effects of seatbelt use, occupant age and BMI (Body Mass Index) were also examined. Individual NASS-CDS electronic cases were also reviewed with MAIS 4+F injury. There were 25 injured occupants in rotated seats and 46 in non-rotated seats. Results: Severe injury risk for front-seat occupants in rear impacts is lower with a rotated seatback in the most severe rear crashes.
Journal Article

Front Seat Performance in Rear Impacts: Effect on 1st and 2nd Row Occupant Injury

2009-04-20
2009-01-0252
Purpose: This study analyzes the effect of front seat performance on occupant injury in rear crashes where there is a 2nd row passenger seated behind the front occupant. Methods: The study was carried out for rear impact crashes in the 1991–2006 NASS-CDS. Only cases where there was a 2nd row occupant seated behind an occupied front seat were chosen. Serious injury (MAIS 3+F) was determined for the front and 2nd row occupants. The performance of the front seat was determined using eight NASS-CDS investigator categories, including no failure, seat failure of the adjuster, seatback or track-anchor and seat deformation by the occupant or intrusion. The rear crashes were subdivided into four severities (<15, 15–25, 25–45 and >45 mph). The risk for serious injury was determined for each category of seat performance. Next, individual cases were reviewed from the online NASS electronic files to better understand the determination of seat performance by the NASS-CDS investigators.
Journal Article

Determination of the Pressure Distribution Beneath Two- and Three-Inch Wide Racing Safety Belts

2008-12-02
2008-01-2977
This study examines the static pressure distribution under both width belts in the shoulder and the pelvis of 15 volunteer subjects. The subjects applied the belt loads to themselves through a lever and pulley system. The configuration of the belts simulated the typical arrangement of a six-point belted upright-seated racing driver. The pressure distribution between the belt and the volunteer's body was determined and recorded with Tek-Scan pressure sensing grids. The paper presents the results of the measurements by comparing the actual area of significant loading beneath the two widths and materials of both lap and shoulder belts. In, general, there no significant increase in loaded area for the wider belts.
Journal Article

Crash Recorders in Racing - An Overview

2008-12-02
2008-01-2972
The crash recorder is an important data gathering device in motorsports. Since the introduction of crash recording in Indy Cars in 1993, the data gathered has been critical in developing improvements in race car structures and driver protection systems. This report will examine which sanctioning bodies use recorders, what type of data is gathered, and how that data is used to improve driver's safety in racing.
Journal Article

Development of the MADYMO Race Car Driver Model for Frontal Impact Simulation and Thoracolumbar Spine Injury Prediction in Indianapolis-type Racing Car Drivers

2008-12-02
2008-01-2975
This paper describes the results of a project to develop a MADYMO occupant model for predicting thoracolumbar (TL) spine injuries during frontal impacts in the Indianapolis-type racing car (ITRC) environment and to study the effect of seat back angle, shoulder belt mounting location, leg hump, and spinal curvature on the thoracolumbar region. The newly developed MADYMO Race Car Driver Model (RCDM) is based on the Hybrid III, 50th percentile male model, but it has a multi-segmented spine adapted from the MADYMO Human Facet Model (HFM) that allows it to predict occupant kinematics and intervertebral loads and moments along the entire spinal column. Numerous simulations were run using the crash pulses from seven real-world impact scenarios and a 70 G standardized crash pulse. Results were analyzed and compared to the real-world impacts and CART HANS® model simulations.
X