Refine Your Search

Topic

Search Results

Technical Paper

Passenger Car Handling Characteristics Associated with Space-Saver Spare Tires

2018-07-12
2018-01-5027
Space-saver spare tires have become near-standard equipment in passenger cars, replacing full-size spares. The properties of space-saver spare tires (cornering stiffness, self-aligning torque, etc.) exhibit some differences when compared to standard size tires. We examine potential handling changes when a space-saver tire is installed on the vehicle by examining steady-state behavior, initial step steering response, and vehicle understeer gradient as functions of the mounting location of the space-saver tire (front or rear axle). Results show that space-saver spare tires perform well and are quite capable in low-ay, linear handling maneuvers.
Technical Paper

Modeling Cruise Control Initiated Wheelspin in Rear Wheel Drive Vehicles

2018-05-04
2018-01-5000
There are driving situations in which a rear-wheel-drive vehicle, operating with an active closed-loop cruise control, can experience wheelspin and a subsequent oversteer/loss of control. The situations involve low-μ surfaces (ice), weather-related phenomenon (rear-wheel hydroplaning), slope-climbing or a combination of these external effects. Although traction control and stability control, depending on the sophistication of the system, can negate many of these situations, the active fleet contains many vehicles not equipped with these features. In the present work, we calculate the conditions under which cruise-control-initiated rear wheel spin can occur.
Technical Paper

Mathematical Analysis of Tire Delamination & Rupture Failures

2017-03-28
2017-01-1509
We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
Journal Article

Friction on Polished vs. Newly Re-Rocked Oil-and-Chip Roadway Surfaces

2016-04-05
2016-01-1568
Roadway tractive capabilities are an important factor in accident reconstruction. In the absence of full-scale experiments, tire/road coefficient of friction values are sometimes quoted from reference textbooks. For the various types of road construction, the values are given only in the form of a wide range. One common roadway type is oil-and-chip construction. We examine stopping distances for newly-rocked oil-and-chip roads vs. similarly constructed roads that have been traffic-polished. The examination was conducted through full-scale braking experiments with instrumented vehicles. Results show that the differences between newly-rocked oil-and-chip roads when compared to roads that are traffic-polished are on the same order as vehicle, tire and ABS algorithm differences, and that full-scale testing is required for accurate μ-values.
Technical Paper

Vehicle Dynamics Simulation Associated with Pothole Encounters Using the HVE SIMON Program and Radial Spring Tire Model

2015-04-14
2015-01-1572
Deteriorated roadway surfaces (potholes) encountered under everyday driving conditions may produce external vehicle disturbance inputs that are both destabilizing and highly transient. We examine vehicle behavior in response to such inputs through simulation. Idealized pothole geometry configurations are used to represent deteriorated roadway surfaces, and as environments in the HVE simulation suite of programs. Differences in vehicle response and behavior are cataloged, and the potential for destabilized vehicle behavior is examined, particularly under conditions in which only one side of the vehicle contracts the pothole. Vehicle types used in the simulation ensemble represent three classes of vehicles: a sedan, a sports car and an SUV. Results show that many combinations of vehicle speed, vehicle type and pothole configuration have essentially no destabilizing effects on the vehicle trajectory.
Technical Paper

Simulation of Transient Maneuver Hydroplaning Events Using HVE

2014-04-01
2014-01-0122
Recent research into the phenomenon of tire hydroplaning has concentrated on the effects of possible path clearing of the rear tires by the front tires. When this occurs, the rear tire behavior and hydroplaning properties will be different from what would occur had the tire been running in an undisturbed flow field. In the present work, we modify rear tire properties to simulate the path clearing effect and utilize the SIMON/HVE suite of simulation programs with a standardized double lane change maneuver to examine path clearing potential during transient vehicle behavior.
Technical Paper

Calculating Tire Overlap during Steady-State Cornering Maneuvers

2012-04-16
2012-01-0242
Vehicles running in wet conditions may experience hydroplaning of one or more tires. Hydroplaning can, and often does, change vehicle braking, acceleration and handling characteristics dramatically. Proper analysis of this behavior requires accommodating the clearing of paths for the rear tires that may result from the front tires engaging the water-coated surface first. In this work, tire overlap is calculated for vehicles in steady-state cornering maneuvers for generalized vehicle dimensions and tire characteristics.
Technical Paper

Potential for Hydroplaning Behavior during Transient Maneuvers

2012-04-16
2012-01-0211
Recent research on the effects of tire hydroplaning has examined the hydroplaning phenomenon and its potential effects on vehicle maneuvering from (1) geometric, (2) straight line braking/acceleration and (3) steady-state cornering maneuver points of view. In this work, we focus on the potential for hydroplaning during a transient maneuver: a standardized double lane change maneuver (ISO3888-1). Using both closed-form calculations and the HVE software suite, it is shown that partial hydroplaning has only a small-to- moderate potential to occur during portions of such maneuvers, but is not likely throughout the entire duration of the maneuver.
Journal Article

Hydroplaning Behavior during Steady- State Cornering Maneuvers

2011-04-12
2011-01-0986
Vehicles running in wet conditions may experience hydroplaning of one or more tires. Hydroplaning can, and often does, change vehicle braking, acceleration and handling characteristics dramatically. Proper analysis of this behavior requires accommodating the clearing of paths for the rear tires that may result from the front tires engaging the water-coated surface first. In this work, a hydroplaning analysis is presented that examines steady-state cornering under potential hydroplaning situations and includes lateral weight transfer, tire load sensitivity and path clearing potential. The sensitivity of vehicle understeer/oversteer characteristics to path clearing and vehicle dimensional characteristics is also examined.
Technical Paper

Experimental Measurements of the Effect of Path Clearing on Hydroplaning Behavior

2011-04-12
2011-01-0975
Vehicles operating in wet conditions may experience hydroplaning of one or more tires. Proper analysis of this behavior requires accommodating the clearing of paths for the rear tires that may result from the front tires engaging the water coated surface first. An experimental program was developed to study tire/road behavior during straight line braking maneuvers on a wet surface. Wheel rpm values were measured with operating ABS via CAN bus data. The experiments allowed qualitative estimation and visualization of the effects of path clearing on rear tires.
Technical Paper

Road Bicycle Dynamics in the Presence of Idealized Roadway Irregularities

2010-04-12
2010-01-0053
Bicycle accidents may occur in the presence of roadway asperities, discontinuities and other pavement failure modes and conditions. We examine the dynamics of ramp-climbing and potential pitchover by the rider when idealized asperities are encountered from a theoretical point of view, and derive an expression for the speed at which pitchover will occur if and when a sudden stop occurs. A series of experiments was carried out in which road bicycle behavior was examined for idealized roadway asperities of known size and configuration. Finally, a series of braking experiments was performed to determine the emergency stopping potential of a road bicycle.
Technical Paper

Controlled Braking Experiments with and without ABS

2010-04-12
2010-01-0100
An experimental program to measure braking characteristics developed under emergency braking conditions by ABS-equipped vehicles was designed and performed. Variables examined included initial braking speed, vehicle type, tire pressure and data recording equipment utilized. All experiments were conducted on a closed airport taxiway constructed of sharp, brushed and heavily striated concrete. Tests were conducted with and without activated ABS systems on the test vehicles. Results showed that (1) with the ABS activated, faint roadway markings were visible only under a very few special circumstances, (2) tire/road μ-values and corresponding deceleration values varied only slightly for differing speeds and ABS conditions, (3) tire pressure made little difference in limited test results, and (4) there were differences in recorded results depending on the equipment used for data acquisition.
Technical Paper

Evaluation of the SIMON Tractor-Semitrailer Model for Steady State and Transient Handling

2006-10-31
2006-01-3479
This research compares the responses of a vehicle modeled in the 3D vehicle simulation program SIMON in the HVE simulation operating system against instrumented responses of a 3-axle tractor, 2-axle semi-trailer combination. The instrumented tests were previously described in SAE 2001-01-0139 and SAE 2003-01-1324 as part of a continuous research effort in the area of vehicle dynamics undertaken at the Vehicle Research and Test Center (VRTC). The vehicle inertial and mechanical parameters were measured at the University of Michigan Transportation Research Institute (UMTRI). The tire data was provided by Smithers Scientific Services, Inc. and UMTRI. The series of tests discussed herein compares the modeled and instrumented vehicle responses during quasi-steady state, steady state and transient handling maneuvers, producing lateral accelerations ranging nominally from 0.05 to 0.5 G's.
Technical Paper

Potential for a Ground-Effects Top Fuel Dragster

2002-12-02
2002-01-3348
The current performance of a top fuel (T/F) dragster racing car is very high. The cars can accelerate from a standing start to well over 330 mph (528 km/h) in < 4.6 seconds! The engine of a T/F dragster can make considerably more power than can be put down to the track surface. Intentional clutch slippage prevents wheelspin for most of the ¼-mile (0.4 km) standard length racing run. Even though the drive tires used are highly specialized and specifically designed for this type of racing environment, more traction is needed. To create more traction, especially during the second ½ of the run, external wings have been employed by the designers of such cars. The size and configuration of the wings is limited according to sanctioning rules. Recent wing failures and accidents have made other options for the creation of downforce appear attractive. In the present work, we consider the potential for using the shape of the car itself to create the required down-force.
Technical Paper

Soft Walls for Racetrack Barriers through the Use of Slatted Wall Design: A Conceptual First Analysis

2002-12-02
2002-01-3343
For a number of years, racetrack designers have been considering various designs for energy-absorbing or “soft” walls. Moving walls, water-filled barrels, tire walls and walls coated with various materials have all been suggested or employed to varying degrees of success. In this paper, a new concept involving a series of slats placed outward from the walls is outlined. First, fundamental requirements for a soft wall design are laid down. Then the development of the slatted wall is presented, along with a series of design variables able to be adjusted for particular applications. The slats have multiple modes of energy dissipation and absorption, and calculations show that the concept has good promise. Evaluation of various design alternatives can be largely done computationally, rather than experimentally, a great advantage given the expense of full-scale barrier testing.
Technical Paper

A Technique for Slowing Racing Cars After Off-Road Excursions: The Vehicle Arrester

2000-11-13
2000-01-3574
Off-road excursions are common in road racing. Current circuit design practice attempts to control off-road vehicle motion and speed with a combination of gravel traps and barriers. Low gravel trap deceleration rates, coupled with wide variation in vehicle attitude during such excursions, produce an unsatisfactory and unacceptable vehicle response. Barriers and walls, while more effective at creating high deceleration rates, can also produce unpredictable response, and often generate vehicle damage and driver injury when contacted, especially in road racing situations. We focus here on car control methods associated more with the vehicle than with the circuit. A new device, the Vehicle Arrester™, has been developed. Calculations and some experimental results indicate that the device could be extremely effective in producing high deceleration rates and a controlled vehicle heading during an excursion.
Technical Paper

The Simulation of Driver Inputs Using a Vehicle Driver Model

2000-03-06
2000-01-1313
Traditional vehicle simulations use two methods of modeling driver inputs, such as steering and braking. These methods are broadly categorized as “Open Loop” and “Closed Loop”. Open loop methods are most common and use tables of driver inputs vs time. Closed loop methods employ a mathematical model of the driving task and some method of defining an attempted path for the vehicle to follow. Closed loop methods have a significant advantage over open loop methods in that they do not require a trial-and-error approach normally required by open loop methods to achieve the desired vehicle path. As a result, closed loop methods may result in significant time savings and associated user productivity. Historically, however, closed loop methods have had two drawbacks: First, they require user inputs that are non-intuitive and difficult to determine. Second, closed loop methods often have stability problems.
Technical Paper

Protection of Drivers and Spectators from Pit Entrance Injuries Incurred During Loss of Control Accidents

1994-12-01
942468
At Indianapolis Motor Speedway (IMS), as well as at a large number of other tracks and temporary racing circuits, the pit lane is separated from the racing surface itself by a wall. The wall is intended to reduce the dangers to pit crew members, spectators and racers themselves, and to prevent interaction between racing and pitted cars. We examine the effectiveness of an attenuation device placed at the head end of the pit wall at IMS. Calculations are presented which show that the device can reduce the potential for injury to drivers by absorbing kinetic energy, by distributing the impact load over a large car area and by reducing and smoothing the acceleration pulse presented to the driver. Because driver restraint systems are not designed for high-g lateral loading, this attenuation represents a real safety feature in the case of a sliding situation. The device itself was (inadvertently) tested by a NASCAR vehicle during a practice session at IMS.
Technical Paper

Evasive Maneuver Capability Without and In the Presence of a Flat Tire

1994-12-01
942469
The relatively fragile nature of racing tires, coupled with the inevitable track debris which results from racing accidents, ensures that racing drivers will routinely experience conditions involving flat tire vehicle dynamics. We define flat tire vehicle dynamics as a situation which requires the driver to provide steering and/or braking and acceleration control while the vehicle is running on one or more tires which have dramatically reduced tire pressure. In the present work, we simulate the handling and braking vehicle dynamics which occur in the presence of a single flat tire on the vehicle. The flat tire was simulated via drastically reduced cornering stiffness, partially reduced limiting frictional capability and increased rolling resistance, and was alternatively simulated on both the front and rear axle. No simulations were conducted with more than a single flat tire because multiple tire failures which do not involve an actual accident contact and/or damage are rare.
Technical Paper

Oversteer/Understeer Characteristics of a Locked Differential

1994-12-01
942485
The type of differential used in a vehicle has an important and often-neglected effect on handling performance. This is particularly important in racing applications, such as in IndyCar racing, in which the type of differential chosen depends on the course being raced (superspeedway ovals, short ovals, temporary street courses and permanent road courses). In the present work, we examine the effect of a locked rear differential on oversteer/understeer behavior. Using a linear tire model, it is shown that employing a locked differential adds a constant understeer offset to the steering wheel angle (SWA) -v- lateral acceleration vehicle signature. A computer simulation of steady-state cornering behavior showed that the actual effect is much more complicated, and is strongly influenced by static weight distribution, front/rear roll couple distribution, available traction and the radius of the turn being negotiated.
X