Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Coordination and Synchronization in the Internet of Things: Design Issues for Real-time Applications

2017-11-07
2017-36-0431
Internet of Things (IoT) for real-time applications are demanding more and more high performance, precision, accuracy, modularity, integration, dependability and other attributes in a complex and/or highly integrated environment. Such systems need to provide coordination among the integrated components (e.g. sensors, computer, controller and networks) for enabling the application to take real-time measurements and to translate into controllable, observable and smart actions with strict timing requirements. Therefore, coordination and synchronization are required to ensure the controllable, observable and smart actions of real-time IoT systems. This paper shows the design issues about the coordination and synchronization in the internet of things applied to real-time applications. We also show the current coordination and synchronization techniques and their design issues when applied to IoT systems.
Technical Paper

A Discussion on the Methods of Thermal Cycling and Power Cycling for Reliability Prediction of Solder Joints of Electronic Components

2015-09-22
2015-36-0553
The increasing use of embedded electronics in aerospace and automotive vehicles increases the designers' concern regarding the reliability of the components as well as the reliability of their interconnections. The discussion about the most appropriate method for assessing the reliability of solder joints for a given application is an ever-present theme in the literature. Several methods of prediction have been developed for assessing the reliability of solder joints. The standard method established by the industries for assessing reliability of solder joints is the thermal cycling. However, when the thermal distributions in real applications are studied, particularly in some electronic components used in on-board electronics of space systems, the thermal cycling does not represent what actually happens in practice in the packaging.
Technical Paper

Application of Methods to Smooth the Transition Between Control Submodes in the Nominal Mode of the Multimission Platform

2012-10-02
2012-36-0378
The Multimission Platform (MMP) is a generic service module currently in Project at INPE. In the 2001 version, its control system can be switched between nine main Operation Modes and other submodes, according to information from satellite sensors and ground commands. The Nominal Mode stabilizes the MMP in three axes and takes it to a nominal attitude, using three reaction wheels. Each wheel has coarse and fine acquisition submodes. The use of multiple modes of control for specific situations frequently is simpler than projecting a single controller for all cases. However, besides being harder to warrant its general stability, the mere switching between these submodes generates bumps, which can reduce the performance and even damage the actuator or plant. In this work, we present an application of diverse methods to smooth the transition between control submodes of the Nominal Mode of the MMP.
Technical Paper

A Discussion on Methods Used in the Verification and Validation of Control Systems Architectures of Cyber-Physical Systems Based on Models and Systems Metrics

2012-10-02
2012-36-0458
The architecture is a concept very broad and important that is directly connected to the realization of a system. It defines what the system is capable of doing, how it accomplishes its mission and how the system is. Currently, the development of system architectures is considered a domain of knowledge where science meets art. In some specific areas, the methods on the development of system architectures are already well formalized. However, when analyzing the evaluation of system architectures such as those for multi-domain control systems, it is clear that there is still much room for rationalization. In these cases, the search for new methods for the evaluation of system architectures is currently in the state of art. In this work we discuss methods used in the verification and validation of control systems architectures of cyber-physical systems based on models and systems metrics.
Technical Paper

Refinements of the GPS Kalman Estimates for the Position and Velocity of a Vehicle during High Acceleration Transients Using IMU Measurements

2012-10-02
2012-36-0513
Currently, the use of Global Navigation Satellite Systems-GNSS has been widely disseminated for the most different applications, from the aeronautical navigation to the car traffic system, being the Global Positioning System-GPS the most used system for such objectives. New applications of such systems have presented more demanding requirements in terms of precision for the position and velocity provided by these systems. Some solutions, as the precision augmentation systems based on satellite or ground improve the precision of the position and velocity estimates. However, the sampling rate of these systems is not substantially improved. Therefore, it constitutes a major limitation of such systems for the position and velocity estimates during high acceleration transients. On other hand, Inertial Navigation Systems- INSs present superior performance under these circumstances.
Technical Paper

Bump Reduction for the Reconfigurable Control Architecture of the MultiMission Platform

2011-10-04
2011-36-0187
Many control systems switch between control modes according to necessity. That is often simpler than designing a full control to all situations. However, this creates new problems, as determining the composed system stability and the transient during switching. The latter, while temporary, may introduce overshooting that degrade performance and damage the plant. This is particularly true for the MultiMission Platform (MMP), a generic service module currently under design at INPE. Its control system can be switched among nine main Modes of Operation and other submodes, according to ground command or information coming from the control system, mainly alarms. It can acquire one and three axis stabilization in generic attitudes, with actuators including magnetotorquers, thrusters and reaction wheels.
Technical Paper

A Worst Case Formula for a Communication and Computation Delay in NCS.

2010-10-06
2010-36-0358
A major trend in modern aerospace and automotive systems is to integrate computing, communication and control into different levels of the vehicle and/or its supervision. A well-fitted architecture adopted by this trend is the common bus network architecture. A Networked Control System (NCS) is called when the control loop is closed through a communication network. The presence of this communication network introduces new characteristics that must be considered at the design time of a control system. This work, still in development, focuses on a worst case formula for a communication (TDMA) plus computation (RMS) on a NCS. This formula, in a first instance, agrees with the simulated cases under the hypotheses and conditions when the NCS is composed by 1 actuator - 1 sensor and when is composed by 2 actuators - 2 sensors. In the future, we intend to generalize this formula and extend this study to NCS that uses other communication protocols or others computer schedulers.
Technical Paper

Fault Detection and Diagnosis (FDD) on a Knock Sensor

2008-10-07
2008-36-0369
The purpose of this work is Fault Detection and Diagnosis (FDD) on a Knock Sensor because some of the modern petrol engines operate on the efficient four-stroke cycle, where each cylinder of the engine contains an intake and exhaust poppet valve that is operated at the appropriate time. The ECM (Engine Control Module) uses the Knock Sensor signal to control timing. The Knock Sensor detects engine knock and sends voltage signal to the ECM. These signals can be sufficient to detect abnormal combustion, like ‘spark knock’ and ‘surface ignition’. Engine knock occurs within a specified range. The Knock Sensor, located in the engine block, cylinder head, or intake manifold is tuned to detect that frequency, which motivates the use of signal models for detection. But this sensor is a wide-band accelerometer of the piezoelectric type too. Analogy with a general seismic mass system is possible since it is a general damped second order vibrating system which is forced into oscillatory motion.
Technical Paper

Automatic Generation, Migration, and Tests of a Real Time Code to an Embedded Controller

2008-10-07
2008-36-0342
A constant challenge for the mobility engineering is to build correctly, the right product at the right time, cost and quality. This challenge gives opportunities to adopt new paradigms in system development, especially in generation, migration and tests of controller codes. This work presents the automatic generation, migration, and tests of real time code to an embedded controller. This is part of the Attitude and Orbit Control System (AOCS) for the Multi-Mission Platform (MMP) of the National Institute for Space Research (INPE). The modeling and simulation paradigm associated with automatic code generation makes possible the migration of a real time embedded controller code to a wide variety of target processors and/or Real Time Operating Systems (RTOS) using the same controller model. The MATRIXx (XMath/SystemBuild/AutoCode/DocumentIt) modeling and simulation environment was used to analyze and design the controller and generate its real time code.
Technical Paper

Sensors Noise Influence in the Analytical Redundancy Approach

2006-11-21
2006-01-2691
State observers employed in the analytical redundancy approach can generate redundant signals. As the sensor has noise in its measures, this noise also affects the redundant signal. In this paper, we will show how the noise in the sensor signal can affect the redundant signal, generated for a bank of observers in a DOS structure, and some simulations results of this signal and finally we will do some considerations in the state observers design to reduce the noise level at the redundant signals.
Technical Paper

Multiples Faults Detection and Isolation in Sensors of Dynamic Systems

2005-11-22
2005-01-4136
Several papers presents fault detection and isolation techniques for fault in only one sensor; in this paper we will present a technique for multiples faults detection and isolation in sensors of dynamic systems. Multiples faults have less probability to occur but it is not null. So in critical applications the system needs to be operational even in this situation. In this paper we will present a design for a Multiples Faults Detection and Isolation (MFDI) system, an example to illustrate this technique and its respective results.
Technical Paper

Eigenstructure Techniques for Fault Detection and Isolation in Aerospace and Automotive Systems

2004-11-16
2004-01-3387
Eigenstructure techniques allow to detect and isolate faulty components in a dynamic process, such as sensor biases, actuator malfunctions, changes in dynamic parameters due to leaks and deterioration. Fault detection is the first step to achieve fault tolerance, but for this the redundancy has to be included in the system. This redundancy can be either by hardware or by software. In situations in which it is not possible to use hardware redundancy only the software redundancy can be used. Therefore using eigenstructure techniques, for the fault detection and isolation, the tests can be done through the angle between the residue vector direction and the fault direction vector. By this way, we can reduce false alarm and the alarm loss rates due to the noise and changes in system parameters.
Technical Paper

Techniques for Diagnosis in Aerospace and Automotive Systems

2003-11-18
2003-01-3630
This paper presents some techniques for fault diagnosis in aerospace and automotive systems. A diagnosis technique is an algorithm to detect and isolate fault components in a dynamic process, such as sensor biases, actuator malfunctions, leaks and equipment deterioration. Fault diagnosis is the first step to achieve fault tolerance, but the redundancy has to be included in the system. This redundancy can be either by hardware or software. In situations in which it is not possible to use hardware redundancy only the analytical redundancy approach can be used to design fault diagnosis systems. Methods based on analytical redundancy need no extra hardware, since they are based on mathematical models of the system.
Technical Paper

Highly Accurate Measure of Time in PC Simulations of Control Systems with Sensors in the Loop

2000-12-01
2000-01-3296
The measure of time intervals with relatively high accuracy (of 1 milisecond, at least) in PC computers is a relatively hard task to solve. But this is essential for the digital simulation, with sensors in the loop, of fast control systems. This work allows the reading of the programmable internal timer 8253 present in a typical PC, reaching 1 ms resolution, at least, through a C high level language routine. The determination of the angular velocity of a 53M2-30H Contraves 3-axis dynamic simulator used in that simulation was improved by the use of this work, allowing the acquisition of consecutive measures of angles and angular velocities with a time interval smaller than 10 ms in some cases. Using this routine and other simulator control and monitoring softwares we estimated the angular velocity faster (100 ms × 210 ms)and better than the simulator Rate Readout Module, and used it in a fast real time control simulation.
X