Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Seatbelt Entanglement: Field Analysis, Countermeasure Development, and Subject Evaluation of Devices Intended to Reduce Risk

2019-04-02
2019-01-0619
Since 2000, over 200 rear seat occupants have become entangled in the seatbelt when they inadvertently switched it from emergency locking mode (ELR) to automatic locking mode (ALR). Since a method is needed to lock the seatbelt when installing child restraint systems (CRS), the National Highway Traffic Safety Administration (NHTSA) commissioned tool, inc. to develop prototype devices that could reduce the risk of seatbelt entanglement resulting from the lockability requirement. A field analysis of entanglement incidents was first conducted to inform countermeasure design. Prototype devices were developed and evaluated through testing with volunteer subjects in comparison to standard seatbelt systems by assessing how different designs would be used to install CRS, the quality of the resulting installations, how users would disentangle a trapped child surrogate, as well as to identify volunteer experience when using the belts themselves.
Technical Paper

Installed Positions of Child Restraint Systems in Vehicle Second Rows

2015-04-14
2015-01-1452
This study documented the position and orientation of child restraint systems (CRS) installed in the second rows of vehicles, creating a database of 486 installations. Thirty-one different CRS were evaluated, selected to provide a range of manufacturers, sizes, types, and weight limits. Eleven CRS were rear-facing only, fourteen were convertibles, five were combination restraints, and one was a booster. Ten top-selling vehicles were selected to provide a range of manufacturers and body styles: four sedans, four SUVS, one minivan, and one wagon. CRS were marked with three reference points on each moving component. The contours and landmarks of each CRS were first measured in the laboratory. Vehicle interior contours, belt anchors, and LATCH anchors were measured using a similar process. Then each CRS was installed in a vehicle using LATCH according to manufacturers' directions, and the reference points of each CRS component were measured to document the installed orientation.
Technical Paper

Design and Testing of a Child Restraint for Developing Countries Using Low-Technology Manufacturing Methods

2011-04-12
2011-01-0260
As passenger car use becomes more common in developing countries, the number of child passengers killed and injuries also increases. Rates of child restraint use appear to be much lower in developing countries than in the U.S. or Europe. One barrier to increased restraint use is the relatively high cost of child restraints in low- and middle-income countries, where the cost of child restraints can be similar to the U.S. but incomes and typical vehicle prices are much lower. As part of a broader effort to improve child passenger safety worldwide, a team at the University of Michigan has begun development of a child restraint that is intended to be fabricated using low-cost technology in developing countries with minimal capital investment. Providing a design that has been tested successfully to regulatory standards may reduce barriers to entry and allow the restraints to be marketed at low prices.
Technical Paper

Measurement of the Contour and Deflection of Vehicle Seats for Comparison with the FMVSS 213 Dynamic Test Bench

2011-04-12
2011-01-0265
Federal Motor Vehicle Safety Standard (FMVSS) 213 specifies a bench seat that is used in dynamic testing of child restraint systems. To assess the representativeness of the FMVSS 213 bench, data from 54 passenger cars, minivans, and SUVs were analyzed to quantify the side-view profile of the seat centerlines in second-row, outboard seats. SAE J826 H-point measurements were performed on all seats and on the FMVSS 213 bench. A landmark-based resampling method was used to obtain a meaningful average seat contour after aligning on H-point. Principal component analysis and regression were conducted to quantify the effects of seat cushion angle, cushion length, and back angle on the seat profile. When aligned on H-point, the cushion length and surface angles of the FMVSS 213 bench were similar to the mean contour, except that no seats were as flat as the bench profile.
Book

Child Anthropometry for Improved Vehicle Occupant Safety

2010-03-22
A detailed understanding of the size, shape, and postures of children is required to design effective restraint systems for protecting children in motor vehicle crashes. Compiled and edited by experts in the fields of anthropometry, ergonomics, and child restraint, this book includes 14 important papers which provide a comprehensive overview of the methods for collecting, analyzing, and applying child anthropometry data for crash safety purposes. A detailed understanding of the size, shape, and postures of children is required to design effective restraint systems for protecting children in motor vehicle crashes. Compiled and edited by experts in the fields of anthropometry, ergonomics, and child restraint, this book includes 14 important papers which provide a comprehensive overview of the methods for collecting, analyzing, and applying child anthropometry data for crash safety purposes.
Technical Paper

Dynamic Performance of Child Restraints with Two-Point Belt Securement

2009-10-06
2009-36-0183
Three different models of forward-facing CRS were evaluated dynamically using a two-point belt fixation (FMVSS 213 Standard). Ann additional test was conducted with one same model of CRS but using the three-point belt fixation. Results showed that CRS performance differ strongly according to belt fixation being the two-point belt securement dangerously inefficient for children transportation safety.
Technical Paper

A New Database of Child Anthropometry and Seated Posture for Automotive Safety Applications

2005-04-11
2005-01-1837
This paper presents a laboratory study of body dimensions, seated posture, and seatbelt fit for children weighing from 40 to 100 lb (18 to 45 kg). Sixty-two boys and girls were measured in three vehicle seats with and without each of three belt-positioning boosters. In addition to standard anthropometric measurements, three-dimensional body landmark locations were recorded with a coordinate digitizer in sitter-selected and standardized postures. This new database quantifies the vehicle-seated postures of children and provides quantitative evidence of the effects of belt-positioning boosters on belt fit. The data will provide guidance for child restraint design, crash dummy development, and crash dummy positioning procedures.
Technical Paper

Development of Surrogate Child Restraints for Testing Occupant Sensing and Classification Systems

2004-03-08
2004-01-0843
This paper describes the design and development of a family of surrogate child restraints that are intended for use in developing and testing occupant sensing and classification systems. Detailed measurements were made of the geometry and mass distribution characteristics of 34 commercial child restraints, including infant restraints, convertibles, combination restraints, and boosters. The restraints were installed in three test seats with appropriately sized crash dummies to obtain data on seat-surface pressure patterns and the position and orientation of the restraint with belt loading. The data were used to construct two surrogates with removable components. The convertible surrogate can be used to represent a rear-facing infant restraint with or without a base, a rear-facing convertible, or a forward-facing convertible. The booster surrogate can represent a high-back belt-positioning booster, a backless booster, or a forward-facing-only restraint with a five-point harness.
Technical Paper

Estimating Infant Head Injury Criteria and Impact Response Using Crash Reconstruction and Finite Element Modeling

2002-11-11
2002-22-0009
A combination of finite element modeling and sled test reconstruction of real-world infant head injury scenarios has been used to investigate infant head impact response and tolerance to skull fracture. Studying the role of cranial sutures on infant skull response was of particular interest. The specific injury scenarios selected for reconstruction involved infants in rear-facing child restraint systems (CRS) who sustained skull fractures and brain injuries from deploying passenger-side frontal airbags. Approximations of the loading conditions for three injury cases, as well as estimates of loading conditions not expected to result in head injury, were produced in the laboratory. A finite element model (FEM) of a six-month-old infant head was developed using available material properties and humanlike geometry. The infant head FEM was used to simulate different injury and no-injury loading conditions based on CRS response data from the reconstruction tests.
Technical Paper

Survey of Older Children in Automotive Restraints

1994-11-01
942222
This paper describes results from a survey of older children with respect to vehicle and booster restraints. The work first consisted of a rudimentary anthropometry study of 155 volunteers aged between 7 and 12 years. The data were compared to an extensive child anthropometry study conducted by the University of Michigan in 1975. Height and sitting height data matched well, while children in the current study appeared heavier. In the restraint fit survey, each child sat in the rear seat alone and in three belt-positioning booster seats (Volvo, Kangaroo, Century CR-3) in three vehicles (Ford Taurus, Pontiac Sunbird, Dodge Caravan). Booster seats greatly improved belt fit over the rear seat alone. The majority of children in this study had better belt fit with the boosters than with the rear seat alone, regardless of size. However, children who could fit well in the boosters and had good or fair belt fits were generally 36 kg or less.
X