Refine Your Search

Topic

Search Results

Technical Paper

Numerical Evaluation of an Electric Turbo Compound for SI Engines

2014-11-11
2014-32-0013
To downsize a spark ignited (SI) internal combustion engine (ICE), keeping suitable power levels, the application of turbocharging is mandatory. The possibility to couple an electric drive to the turbocharger (electric turbo compound, ETC) can be considered, as demonstrated by a number of studies and the current application in the F1 Championship, since it allows to extend the boost region to the lowest ICE rotational speeds and to reduce the turbo lag. As well, some recovery of the exhaust gas residual energy to produce electrical energy is possible. The present paper shows the first numerical results of a research program under way in collaboration between the Universities of Pisa and Genoa. The study is focused on the evaluation of the benefits resulting from the application of ETC to a twin-cylinder small SI engine (900 cm3).
Technical Paper

Further Insight into the Possibility to Fuel a SI Engine with Ammonia plus Hydrogen

2014-11-11
2014-32-0082
Storing hydrogen is one of the major issues concerning its utilization on board vehicles. A promising solution is storing hydrogen in the form of ammonia that contains almost 18% hydrogen by mass and is liquid at roughly 9 bar at environmental temperature. As a matter of fact, liquid ammonia contains 1.7 times as much hydrogen as liquid hydrogen itself, thus involving relatively small volumes and light and low-cost tanks. It is well known that ammonia can be burned directly in I.C. engines, however a combustion promoter is necessary to support and speed up combustion especially in the case of high-speed S.I. engines. The best promoter is hydrogen, due to its opposed and complementary characteristics to those of ammonia, Hydrogen has high combustion velocity, low ignition energy and wide flammability range, whereas ammonia has low flame speed, narrow flammability range, high ignition energy and high self-ignition temperature.
Journal Article

Diesel Fuel by Scrap-Tyre Thermal-Mechanical Pyrolysis

2013-10-15
2013-32-9038
Current energy policies are encouraging the near-term use of fuels derived from civil and industrial waste residues, giving new perspectives for their disposal. The possibility of using, in Diesel engines, a liquid fuel derived from waste synthetic polymeric matrices, such as scrap tyres, is evaluated in this paper. The fuel is obtained by means of an innovative technology based on a thermo-mechanical cracking process at moderate temperatures and pressures. A preliminary investigation was carried out on a 440 cm3 single-cylinder Diesel engine for stationary applications using a commercial automotive Diesel fuel (UNI-EN 590:2010) and two mixtures of automotive Diesel fuel and tyre pyrolysis oil (TPO): the first one containing 20% TPO by volume, the other containing 40% TPO.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Technical Paper

Ammonia Plus Hydrogen as Fuel in a S.I. Engine: Experimental Results

2012-10-23
2012-32-0019
Storing hydrogen is one of the major problems concerning its utilization on board vehicles. Today hydrogen can be compressed and stored at 200 or 350 bar (it is foreseen that in a near future storage pressure will reach 700 bar, according to new expected regulations and using tanks in composite materials) or cryogenically liquefied. An alternative solution is storing hydrogen in the form of ammonia that is liquid at roughly 9 bar at environmental temperature and therefore involves relatively small masses and volumes and requires light and low-cost tanks. Moreover, ammonia contains almost 18% hydrogen by mass and, by volume, liquid ammonia contains 1.7 times as much hydrogen as liquid hydrogen. It is well known that ammonia can be burned directly in I.C. engines, however a combustion promoter is necessary to support combustion especially in the case of high-speed S.I. engines.
Technical Paper

Heavy Duty HCPC

2011-08-30
2011-01-1824
This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. It was named Homogenous Charge Progressive Combustion (HCPC) and operates on the split-cycle principle. In previous papers the feasibility of this combustion concept was shown for light-duty diesel engines. This paper illustrates a CFD study concerning a heavy-duty version of the HCPC engine. The engine displaces 13 liters and develops 700 kW indicated power at 2200 rpm with 49% maximum indicated efficiency and clean combustion.
Technical Paper

CFD Study of HCPC Turbocharged Engine

2010-10-25
2010-01-2107
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. This new combustion concept is called Homogenous Charge Progressive Combustion (HCPC). HCPC is based on split-cycle principle.
Journal Article

Clean Diesel Combustion by Means of the HCPC Concept

2010-04-12
2010-01-1256
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fuelled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and gradually admitting it into the cylinder during the combustion process.
Journal Article

Development and Optimization of the Ford 3.5L V6 EcoBoost Combustion System

2009-04-20
2009-01-1494
Recently, Ford Motor Company announced the introduction of EcoBoost engines in its Ford, Lincoln and Mercury vehicles as an affordable fuel-saving option to millions of its customers. The EcoBoost engine is planned to start production in June of 2009 in the Lincoln MKS. The EcoBoost engine integrates direct fuel injection with turbocharging to significantly improve fuel economy via engine downsizing. An application of this technology bundle into a 3.5L V6 engine delivers up to 12% better drive cycle fuel economy and 15% lower emissions with comparable torque and power as a 5.4L V8 PFI engine. Combustion system performance is key to the success of the EcoBoost engine. A systematic methodology has been employed to develop the EcoBoost engine combustion system.
Technical Paper

3D CFD Upfront Optimization of the In-Cylinder Flow of the 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1492
This paper presents part of the analytical work performed for the development and optimization of the 3.5L EcoBoost combustion system from Ford Motor Company. The 3.5L EcoBoost combustion system is a direct injected twin turbocharged combustion system employing side-mounted multi-hole injectors. Upfront 3D CFD, employing a Ford proprietary KIVA-based code, was extensively used in the combustion system development and optimization phases. This paper presents the effect of intake port design with various levels of tumble motion on the combustion system characteristics. A high tumble intake port design enforces a well-organized stable motion that results in higher turbulence intensity in the cylinder that in turn leads to faster burn rates, a more stable combustion and less fuel enrichment requirement at full load.
Technical Paper

Homogeneous Charge Progressive Combustion (HCPC): CFD Study of an Innovative Diesel HCCI Concept

2009-04-20
2009-01-1344
This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fueled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and in gradually admitting it into the cylinder during the combustion process. This new combustion concept has been called Homogeneous Charge Progressive Combustion (HCPC). CFD analysis was conducted to understand the feasibility of the HCPC concept and to identify the parameters that control and influence this novel HCCI combustion. A CFD code with detailed kinetic chemistry (AVL FIRE) was used in the study. Results in terms of pressure, heat release rate, temperature, and emissions production are presented that demonstrate the validity of the HCPC combustion concept.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Technical Paper

Multidimensional Simulation of the Influence of Fuel Mixture Composition and Injection Timing in Gasoline-Diesel Dual-Fuel Applications

2008-04-14
2008-01-0031
Homogeneous charge compression ignition (HCCI) combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, there are several difficulties that must be overcome for HCCI practical use, such as difficult ignition timing controllability. Indeed, too early or too late ignition can occur with obvious drawbacks. In addition, the increase in cyclic variation caused by the ignition timing uncertainty can lead to uneven engine operation. As a way to solve the combustion phasing control problem, dual-fuel combustion has been proposed. It consists of a diesel pilot injection used to ignite a pre-mixture of gasoline (or other high octane fuel) and air. Although dual-fuel combustion is an attractive way to achieve controllable HCCI operation, few studies are available to help the understanding of its in-cylinder combustion behavior.
Technical Paper

Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics

2007-04-16
2007-01-0165
In this paper, knock in a Ford single cylinder direct-injection spark-ignition (DISI) engine was modeled and investigated using the KIVA-3V code with a G-equation combustion model coupled with detailed chemical kinetics. The deflagrative turbulent flame propagation was described by the G-equation combustion model. A 22-species, 42-reaction iso-octane (iC8H18) mechanism was adopted to model the auto-ignition process of the gasoline/air/residual-gas mixture ahead of the flame front. The iso-octane mechanism was originally validated by ignition delay tests in a rapid compression machine. In this study, the mechanism was tested by comparing the simulated ignition delay time in a constant volume mesh with the values measured in a shock tube under different initial temperature, pressure and equivalence ratio conditions, and acceptable agreements were obtained.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Optimization of a Large Diesel Engine via Spin Spray Combustion*

2005-04-11
2005-01-0916
A numerical simulation and optimization study was conducted for a medium speed direct injection diesel engine. The engine's operating characteristics were first matched to available experimental data to test the validity of the numerical model. The KIVA-3V ERC CFD code was then modified to allow independent spray events from two rows of nozzle holes. The angular alignment, nozzle hole size, and injection pressure of each set of nozzle holes were optimized using a micro-genetic algorithm. The design fitness criteria were based on a multi-variable merit function with inputs of emissions of soot, NOx, unburned hydrocarbons, and fuel consumption targets. Penalties to the merit function value were used to limit the maximum in-cylinder pressure and the burned gas temperature at exhaust valve opening. The optimization produced a 28.4% decrease in NOx and a 40% decrease in soot from the baseline case, while giving a 3.1% improvement in fuel economy.
Technical Paper

Application of Micro-Genetic Algorithms for the Optimization of Injection Strategies in a Heavy-Duty Diesel Engine

2005-04-11
2005-01-0219
In this paper, optimized single and double injection schemes were found using multi-dimensional engine simulation software (KIVA-3V) and a micro-genetic algorithm for a heavy duty diesel engine. The engine operating condition considered was at 1737 rev/min and 57 % load. The engine simulation code was validated using an engine equipped with a hydraulic-electronically controlled unit injector (HEUI) system. Five important parameters were used for the optimization - boost pressure, EGR rate, start-of-injection timing, fraction of fuel in the first pulse and dwell angle between first and second pulses. The optimum results for the single injection scheme showed significant improvements for the soot and NOx emissions. The start of injection timing was found to be very early, which suggests HCCI-like combustion. Optimized soot and NOx emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively, for the single injection scheme.
Technical Paper

CFD Modeling of a Vortex Induced Stratification Combustion (VISC) System

2004-03-08
2004-01-0550
This paper describes the CFD modeling work conducted for the development and research of a Vortex Induced Stratification Combustion (VISC) system that demonstrated superior fuel economy benefits. The Ford in-house CFD code and simulation methodology were employed. In the VISC concept a vortex forms on the outside of the wide cone angle spray and transports fuel vapor from the spray to the spark plug gap. A spray model for an outward-opening pintle injector used in the engine was developed, tested, and implemented in the code. Modeling proved to be effective for design optimization and analysis. The CFD simulations revealed important physical phenomena associated with the spray-guided combustion system mixing preparation.
Technical Paper

Development and Analysis of a Spray-Guided DISI Combustion System Concept

2003-10-27
2003-01-3105
An innovative stratified-charge DISI combustion concept has been developed using a mixture formation method referred to as Vortex Induced Stratification Combustion (VISC). This paper describes the combustion system concept and an initial assessment of it, performed on a single-cylinder test engine and through CFD modeling. This VISC concept utilizes the vortex naturally formed on the outside of a wide spray cone that is enhanced by bulk gas flow control and piston crown design. This vortex transports fuel vapor from the spray cone to the spark gap. This system allows a late injection timing and produces a well-confined mixture, which together provide an improved compromise between combustion phasing and combustion efficiency over typical wall-guided systems. Testing results indicate an 18% fuel consumption reduction, compared with a baseline PFI engine, over a drive cycle (neglecting cold start and transient effects).
X