Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Numerical Study on the Combustion Characteristics of an Ammonia/Hydrogen Engine with Active Prechamber Ignition

2024-04-09
2024-01-2104
Both ammonia and hydrogen, as zero-carbon fuels for internal combustion engines, are received growing attention. However, ammonia faces a challenge of low flame propagation velocity. Through injecting hydrogen into active pre-chamber, its jet flame ignition can accelerate the flame propagation velocity of ammonia. The influence of different pre-chamber structures on engine combustion characteristics is significant. In this paper, numerical studies were conducted to assess the impact of various pre-chamber structures and hydrogen injection strategy on the combustion characteristics of ammonia/hydrogen engines while maintaining the equivalent ratio of 1.0. The results indicate that the jet angle significantly affects the position of jet flame and the followed main combustion. The in-cylinder combustion pressure peaks at jet angle of 150°. Meanwhile, the combustion duration of 150° is shortened by 74.3% compared with that of 60°.
Technical Paper

Oxygenated Fuels as Reductants for Lean NOx Trap Regeneration

2024-04-09
2024-01-2132
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Combustion and HC&PN Emission Characteristics at First Cycle Starting of Gasoline Engine under Lean Burn Based on Active Pre-Chamber

2024-04-09
2024-01-2108
As a novel ignition technology, pre-chamber ignition can enhance ignition energy, promote flame propagation, and augment turbulence. However, this technology undoubtedly faces challenges, particularly in the context of emission regulations. Of this study, the transient characteristics of combustion and emissions in a hybrid electric vehicle (HEV) gasoline engine with active pre-chamber ignition (PCI) under the first combustion cycle of quick start are focused. The results demonstrate that the PCI engine is available on the first cycle for lean combustion, such as lambda 1.6 to 2.0, and exhibit particle number (PN) below 7×107 N/mL at the first cycle. These particles are predominantly composed of nucleation mode (NM, <50 nm) particles, with minimal accumulation mode (AM, >50 nm) particles.
Technical Paper

Effect of Port Water Injection on the Knock and Combustion Characteristics for an Argon Power Cycle Hydrogen Engine

2024-04-09
2024-01-2612
Argon power cycle hydrogen engine is an internal combustion engine that employs argon instead of nitrogen of air as the working fluid, oxygen as the oxidizer, and hydrogen as the fuel. Since argon has a higher specific heat ratio than air, argon power cycle hydrogen engines have theoretically higher indicated thermal efficiencies according to the Otto cycle efficiency formula. However, argon makes the end mixture more susceptible to spontaneous combustion and thus is accompanied by a stronger knock at a lower compression ratio, thus limiting the improvement of thermal efficiency in engine operation. In order to suppress the limitation of knock on the thermal efficiency, this paper adopts a combination of experimental and simulation methods to investigate the effects of port water injection on the knock suppression and combustion characteristics of an argon power cycle hydrogen engine.
Technical Paper

Study of Dimethyl Ether Fuel Spray Characteristics and Injection Profile

2024-04-09
2024-01-2702
The majority of transportation systems have continued to be powered by the internal combustion engine and fossil fuels. Heavy-duty applications especially are reliant on diesel engines for their high brake efficiency, power density, and robustness. Although engineering developments have advanced engines towards significantly fewer emissions and higher efficiency, the use of fossil-derived diesel as fuel sets a fundamental threshold in the achievable total net carbon reduction. Dimethyl ether can be produced from various renewable feedstocks and has a high chemical reactivity making it suitable for heavy-duty applications, namely compression ignition direct injection engines. Literature shows the successful use of DME fuels in diesel engines without significant hardware modifications.
Technical Paper

Effect of Spark Assisted Compression Ignition on the End-Gas Autoignition with DME-air Mixtures in a Rapid Compression Machine

2024-04-09
2024-01-2822
Substantial effort has been devoted to utilizing homogeneous charge compression ignition (HCCI) to improve thermal efficiency and reduce emission pollutants in internal combustion engines. However, the uncertainty of ignition timing and limited operational range restrict further adoption for the industry. Using the spark-assisted compression ignition (SACI) technique has the advantage of using a spark event to control the combustion process. This study employs a rapid compression machine to characterize the ignition and combustion process of Dimethyl ether (DME) under engine-like background temperature and pressures and combustion regimes, including HCCI, SACI, and knocking onsite. The spark ignition timing was swept to ignite the mixture under various thermodynamic conditions. This investigation demonstrates the presence of four distinct combustion regimes, including detonation, strong end-gas autoignition, mild end-gas autoignition, and HCCI.
Technical Paper

Efficiency Enhancement and Lean Combustion Performance Improvement by Argon Power Cycle in a Methane Direct Injection Engine

2023-10-31
2023-01-1618
Argon Power Cycle (APC) is an innovative future potential power system for high efficiency and zero emissions, which employs an Ar-O2 mixture rather than air as the working substance. However, APC hydrogen engines face the challenge of knock suppression. Compared to hydrogen, methane has a better anti-knock capacity and thus is an excellent potential fuel for APC engines. In previous studies, the methane is injected into the intake port. Nevertheless, for lean combustion, the stratified in-cylinder mixture formed by methane direct injection has superior combustion performances. Therefore, based on a methane direct injection engine at compression ratio = 9.6 and 1000 r/min, this study experimentally investigates the effects of replacing air by an Ar-O2 mixture (79%Ar+21%O2) on thermal efficiencies, loads, and other combustion characteristics under different excess oxygen ratios. Meanwhile, the influences of varying the methane injection timing are studied.
Technical Paper

NOx Emission Characteristics of Active Pre-Chamber Jet Ignition Engine with Ammonia Hydrogen Blending Fuel

2023-10-31
2023-01-1629
Ammonia is employed as the carbon-free fuel in the future engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx and unburned NH3/H2 in the exhaust emissions is produced from combustion of ammonia and is one kind of the most strictly controlled pollutants in the emission regulation. This paper aims to investigate the NOx and unburned NH3/H2 generative process and emission characteristics by CFD simulation during the engine combustion. The results show that the unburned ammonia and hydrogen emissions increase with an increase of equivalence ratio and hydrogen blending ratio. In contrast, the emission concentrations of NOx, NO, and NO2 decrease with the increasing of equivalence ratio, but increase with hydrogen blending ratio rising. The emission concentration of N2O is highly sensitive to the O/H group and temperature, and it is precisely opposite to that of NO and NO2.
Technical Paper

Characterization of an Integrated Three-Way Catalyst/Lean NOx Trap System for Lean Burn SI Engines

2023-10-31
2023-01-1658
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Investigation of Fuel Injection Pressure Impact on Dimethyl Ether Combustion

2023-10-31
2023-01-1644
Compression ignition engines used in heavy-duty applications are typically powered by diesel fuel. The high energy density and feedstock abundance provide a continuing source for the immense energy demand. However, the heavy-duty transportation sector is challenged with lowering greenhouse gas and combustion by-product emissions, including carbon dioxide, nitrogen oxides, and particulate matter. The continuing development of engine management and combustion strategies has proven the ability to meet current regulations, particularly with higher fuel injection pressure. Nonetheless, a transition from diesel to a renewable alternative fuel source will play a significant role in reducing greenhouse gases while maintaining the convenience and energy density inherent in liquid fuels. Dimethyl ether is a versatile fuel that possesses combustion properties suitable for compression ignition engines and physical properties helpful for clean combustion.
Technical Paper

Combustion and Emission Characteristics of Ammonia Jet Flames, Based on a Controllable Activated Thermal Atmosphere

2023-10-31
2023-01-1645
Ammonia is a new type of carbon-free fuel with low cost, clean and safe. The research and application of zero-carbon fuel internal combustion engines has become the mainstream of future development. However, there still exist problems should be solved in the application of ammonia fuel. Due to the lower flame laminar speed and higher ignition temperature, ammonia may have unstable combustion phenomena. In this work, the characteristics of ammonia combustion have been investigated, based on controllable thermal activated atmosphere burner. The ignition delay has been used to analyze the ammonia combustion characteristics. With the increase in co-flow temperature, the ignition delay of ammonia/air has an obvious decline. In order to investigate the emission characteristics of ammonia, CHEMKIN is used to validate the different chemical reaction mechanisms and analyse the ammonia emissions.
Technical Paper

Numerical Investigations on Formation Process of N2O in Ammonia/Hydrogen Fueled Pre-Chamber Jet Ignition Engine

2023-10-30
2023-01-7023
Ammonia is used as the carbon-free fuel in the engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx in the exhaust emissions is produced after combustion of ammonia and is one kind of the most tightly controlled pollutants in the emission regulation. Nitrous Oxide (N2O) is a greenhouse gas with a very strong greenhouse effect, so that the N2O emissions needs to be paid close attention. In this paper, the CFD simulation of the N2O formation and emission characteristics during combustion is carried in the ammonia/hydrogen fueled pre-chamber jet ignition engine.
Technical Paper

Simulation Study on the Effect of In-Cylinder Water Injection Mass on Engine Combustion and Emissions Characteristics

2023-10-30
2023-01-7004
The rapid development of the automobile industry has brought energy and environmental issues that scholars are increasingly concerning about. Improving efficiency and reducing emissions are currently two hot topics in the internal combustion engine industry. Direct water injection technology (DWI) can effectively reduce the cylinder temperature, which is due to the absorption of the heat by the injecting liquid water. In addition, lower temperature in the cylinder will reduce the formation of NO. In this paper, a CFD simulation of DWI application in a lean-burning single-cylinder engine with pre-chamber jet ignition was carried out. And the engine was experimentally tested for the simulation model validation. And then the effect of DWI strategy with different injecting water mass on the combustion and emissions characteristics are analyzed. Physically, injected water not only absorbs heat but also provides heat insulation.
Technical Paper

Simulation of charged species flow and ion current detection for knock sensing in gasoline engines with active pre-chamber

2023-09-29
2023-32-0005
Recently, it has been wildly recognized that active pre- chamber has a significant effect on extending the lean burn limit of gasoline engines. Ion current signals in the combustion is also considered as a promising approach to the engine knock detection. In this study, the feasibility of employing ion current in an active pre- chamber for combustion diagnosis was analyzed by three-dimensional numerical simulation on a single- cylinder engine equipped with active pre-chamber. The flow characteristics of charged species (NO+, H3O+ and electrons) in the main chamber and pre-chamber under knock conditions are investigated at different engine speeds, intake pressures and ignition timings. The results show that the ion current can theoretically be used for the knock detection of the active pre- chamber. The peak value of the electron or H3O+ mass fraction caused by knocking backflow can be used as knock indication peak.
Technical Paper

Investigation of Dimethyl Ether Dual-Fuel Combustion Using Propane and Ethanol as Premixed Fuel

2023-09-29
2023-32-0018
The combustion and emission characteristics of dual-fuel combustion were investigated using dimethyl ether direct injection and premixed low-carbon fuels. Dimethyl ether was used as the direct injection fuel for its high reactivity and low propensity to form particulate matter. Ethanol and Propane, two fuels of low reactivity, were premixed in the intake port. An injection timing sweep of varying premixed energy shares and engine loads was tested. Combustion analysis was conducted based on in-cylinder pressure measurements while detailed speciation of engine-out emissions was performed via FTIR. The proper injection advance and premixed energy share can realize low NOx and high combustion efficiency. Ethanol showed stronger impact to DME ignition delay as compared with propane.
Technical Paper

Combustion of Premixed Ammonia and Air Initiated by Spark- ignited Micro-gasoline-jet in a Constant Volume Combustible Vessel

2023-09-29
2023-32-0066
As an efficient hydrogen carrier, ammonia itself is also a promising zero-carbon fuel that is drawing more and more attention. As the combustion of pure ammonia is hard to achieve on SI engines, in this study, spark- ignited micro-gasoline-jet was utilized to ignite the premixed ammonia/air mixture in a constant volume combustible vessel at different premixed ammonia/air excess air coefficient and backpressure (represented by ammonia partial pressure). The flame image was captured by a high-speed camera and the transient pressure change in the vessel was measured by an engine cylinder pressure sensor.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Technical Paper

Knock Inhibition in Hydrogen Fueled Argon Power Cycle Engine with a Higher Compression Ratio by Water Direct Injection at Late Exhaust Stroke

2023-04-11
2023-01-0227
Hydrogen-fueled Argon Power Cycle engine is a novel concept for high efficiency and zero emissions, which replaces air with argon/oxygen mixtures as working fluid. However, one major challenge is severe knock caused by elevated in-cylinder temperature resulting from high specific heat ratio of Argon. A typical knock-limited compression ratio is around 5.5:1, which limits the thermal efficiency of Argon Power Cycle engines. In this article, preliminary experimental research on the effect of water direct injection at late exhaust stroke is presented at 1000 r/min with IMEP ranging from 0.3~0.6 MPa. Results show that, with temperature-reducing effect of water evaporation, knock is greatly inhibited and the engine can run normally at a higher compression ratio of 9.6:1. Water injected at the exhaust stroke minimizes its reducing effect on the specific heat ratio of the working fluid during the compression and expansion strokes.
X