Refine Your Search

Topic

Author

Search Results

Technical Paper

Evolution of Light-Duty Gasoline Compression Ignition (LD-GCI) for High Efficiency and US Tier3- Bin30 Emissions

2024-04-09
2024-01-2092
It is widely recognized that internal combustion engines (ICE) are needed for transport worldwide for years to come, however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieve demanding efficiency and emissions targets. At Aramco Research Center-Detroit, an advanced, multi-cylinder GCI engine was designed and built using the latest combustion system, engine controls, and lean aftertreatment. The combustion system uses Aramco’s PPCI-diffusion process for ultra-low NOx and smoke. A P2 48V mild hybrid system was integrated on the engine for braking energy recovery and improved cold starts. For robust low-load operation, a 2-step valvetrain system was used for exhaust rebreathing. Test data showed that part-load fuel consumption was reduced 7 to 10 percent relative to a competitive 2.0L European diesel engine.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean Compression-Ignition Engines, Part II: Air-Handling and Exhaust Aftertreatment

2024-01-16
2024-26-0044
Currently, on-road transport contributes nearly 12% of India’s total energy related carbon dioxide (CO2) emissions that are expected to be doubled by 2040. Following the global trends of increasingly stringent greenhouse gas emissions (GHG) and criteria emissions, India will likely impose equivalent Bharat Stage (BS) regulations mandating simultaneous reduction in CO2 emissions and nearly 90% lower nitrogen oxides (NOx) from the current BS-VI levels. Consequently, Indian automakers would likely face tremendous challenges in meeting such emission reduction requirements while balancing performance and the total cost of ownership (TCO) trade-offs. Therefore, it is conceivable that cost-effective system improvements for the existing internal combustion engine (ICE) powertrains would be of high strategic importance for the automakers.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean CI Engines, Part I: Combustion System Optimization

2024-01-16
2024-26-0037
Following global trends of increasingly stringent greenhouse gas (GHG) and criteria pollutant regulations, India will likely introduce within the next decade equivalent Bharat Stage (BS) regulations for Diesel engines requiring simultaneous reduction in CO2 emissions and up to 90% reduction in NOx emission from current BS-VI levels. Consequently, automakers are likely to face tremendous challenges in meeting such emission reduction requirements while maintaining performance and vehicle total cost of ownership (TCO), especially in the Indian market, which has experienced significant tightening of emission regulation during the past decade. Therefore, it is conceivable that cost effective approaches for improving existing diesel engines platforms for future regulations would be of high strategic importance for automakers.
Technical Paper

Exhaust Rebreathing Strategy to Improve Low Load Operation Applied on a Heavy-Duty Gasoline Compression Ignition Engine

2023-10-31
2023-01-1621
This study investigates the effect of exhaust rebreathe (RB) on the low-load regime of a Gasoline Compression Ignition (GCI) heavy-duty engine. For this engine, a custom-designed cam profile with a second exhaust event occurring during the intake stroke was tested under different experimental load and speed conditions. First, the study focuses on the of rebreathe on combustion and gas exchange processes in the low load range of 240-300 kPa BMEP at three key speeds: 820, 1200, and 1600 rpm. Then, a general analysis of the thermal management of this technology is assessed in the low-load map, evaluating the impact on turbine outlet temperature and after-treatment performance related to the conversion rates for NOx and total hydrocarbons (THC). The detailed analysis revealed an increase of around 9% in the trapped residuals for the RB operation, translating to an in-cylinder temperature increase and raising the exhaust temperature up to 50°C.
Technical Paper

Valvetrain System for Exhaust Rebreathing on a Light-Duty Gasoline Compression Ignition (GCI) Engine

2023-10-31
2023-01-1673
The global automotive industry is undergoing a significant transition as battery electric vehicles enter the market and diesel sales decline. It is widely recognized that internal combustion engines (ICE) are needed for transport for years to come, however, demands on fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieving demanding future efficiency and emissions targets. A key technology enabler for GCI is partially premixed, compression ignition (PPCI) combustion, which involves two high-pressure, late, fuel injections during the compression stroke. Both NOx and smoke emissions are greatly reduced relative to diesel engines, and this reduces aftertreatment (AT) requirements significantly. Exhaust rebreathing (RB) is used for robust low-load and cold operation. This is enabled by use of 2-Step, mode switching rocker arms to allow switching between rebreathe and normal combustion modes.
Journal Article

In-Cycle Closed-Loop Combustion Control for Pilot Misfire Compensation

2020-09-15
2020-01-2086
Pilot injections are normally used for the reduction of diesel engine emissions and combustion noise. Nonetheless, with a penalty on the indicated thermal efficiency. The cost is reduced by the minimization of the pilot mass, which on its counterpart increases the risk of pilot misfire. Pilot misfire can have a higher penalty on the indicated efficiency if it is not compensated adequately. This paper investigates how in-cycle closed-loop combustion control techniques can reduce the effects of pilot misfire events. By closed-loop combustion control, pilot misfire can be detected and counteracted in-cycle. Two injection strategies are investigated. The first is the control of the main injection, the second includes an additional second pilot injection. Based on the in-cycle misfire diagnose, two architectures are investigated. The first uses a cycle-to-cycle controller to set the main injection under each scenario.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

Regulated Emissions and Detailed Particle Characterisation for Diesel and RME Biodiesel Fuel Combustion with Varying EGR in a Heavy-Duty Engine

2019-12-19
2019-01-2291
This study investigates particulate matter (PM) and regulated emissions from renewable rapeseed oil methyl ester (RME) biodiesel in pure and blended forms and contrasts that to conventional diesel fuel. Environmental and health concerns are the major motivation for combustion engines research, especially finding sustainable alternatives to fossil fuels and reducing diesel PM emissions. Fatty acid methyl esters (FAME), including RME, are renewable fuels commonly used from low level blends with diesel to full substitution. They strongly reduce the net carbon dioxide emissions. It is largely unknown how the emissions and characteristics of PM get altered by the combined effect of adding biodiesel to diesel and implementing modern engine concepts that reduce nitrogen oxides (NOx) emissions by exhaust gas recirculation (EGR).
Technical Paper

Measurement of Gasoline Exhaust Particulate Matter Emissions with a Wide-Range EGR in a Heavy-Duty Diesel Engine

2019-04-02
2019-01-0761
A large number of measurement techniques have been developed or adapted from other fields to measure various parameters of engine particulates. With the strict limits given by regulations on pollutant emissions, many advanced combustion strategies have been developed towards cleaner combustion. Exhaust gas recirculation (EGR) is widely applied to suppress nitrogen oxide (NOx) and reduce soot emissions. On the other hand, gasoline starts to be utilized in compression ignition engines due to great potential in soot reduction and high engine efficiency. New engine trends raise the need for good sensitivity and suitable accuracy of the PM measurement techniques to detect particulates with smaller size and low particulate mass emissions. In this work, we present a comparison between different measurement techniques for particulate matter (PM) emissions in a compression ignition engine running on gasoline fuel. A wide-range of EGR was used with lambda varied from 3 down to 1.
Technical Paper

Thermal Reduction of NOx in a Double Compression Expansion Engine by Injection of AAS 25 and AUS 32 in the Exhaust Gases

2019-01-15
2019-01-0045
The double compression expansion engine (DCEE) is a promising concept for high engine efficiency while fulfilling the most stringent European and US emission legislation. The complete thermodynamic cycle of the engine is split among several cylinders. Combustion of fuel occurs in the combustion cylinder and in the expansion cylinder the exhaust gases are over expanded to obtain high efficiency. A high-pressure tank is installed between these two cylinders for after-treatment purposes. One proposal is to utilize thermal reduction of nitrogen oxides (NOx) in the high-pressure tank as exhaust temperatures can be sufficiently high (above 700 °C) for the selective non-catalytic reduction (SNCR) reactions to occur. The exhaust gas residence time at these elevated exhaust temperatures is also long enough for the chemical reactions, as the volume of the high-pressure tank is substantially larger than the volume of the combustion cylinders.
Journal Article

NOx-Conversion Comparison of a SCR-Catalyst Using a Novel Biomimetic Effervescent Injector on a Heavy-Duty Engine

2019-01-15
2019-01-0047
NOx pollution from diesel engines has been stated as causing over 10 000 pre-mature deaths annually and predictions are showing that this level will increase [1]. In order to decrease this growing global problem, exhaust after-treatment systems for diesel engines have to be improved, this is especially so for vehicles carrying freight as their use of diesel engines is expected to carry on into the future [2]. The most common way to reduce diesel engine NOx out emissions is to use SCR. SCR operates by injecting aqueous Urea solution, 32.5% by volume (AUS-32), that evaporates prior the catalytic surface of the SCR-catalyst. Due to a catalytic reaction within the catalyst, NOx is converted nominally into Nitrogen and Water. Currently, the evaporative process is enhanced by aggressive mixer plates and long flow paths.
Technical Paper

The Potential of SNCR Based NOx Reduction in a Double Compression Expansion Engine

2018-04-03
2018-01-1128
Selective Non-Catalytic Reduction (SNCR), used to reduce the emissions of nitrogen oxides (NOx), has been a well-established technology in the power plant industry for several decades. The SNCR technique is an aftertreatment strategy based on thermal reduction of NOx at high temperatures. In the compression ignition engine application, the technology has not been applicable due to low exhaust temperatures, which makes the SCR (Selective Catalytic Reduction) system essential for efficient nitrogen oxide reduction to fulfill the environment legislation. For a general Double Compression Expansion Engine (DCEE) the complete expansion cycle is split in two separate cycles, i.e. the engine is a split cycle engine. In the first cylinder the combustion occurs and in the second stage the combustion gas is introduced and further expanded in a low-pressure expansion cylinder. The combustion cylinder is connected with the expansion cylinder through a large insulated high-pressure tank.
Technical Paper

Combined Low and High Pressure EGR for Higher Brake Efficiency with Partially Premixed Combustion

2017-10-08
2017-01-2267
The concept of Partially Premixed Combustion (PPC) in internal combustion engines has shown to yield high gross indicated efficiencies, but at the expense of gas exchange efficiencies. Most of the experimental research on partially premixed combustion has been conducted on compression ignition engines designed to operate on diesel fuel and relatively high exhaust temperatures. The partially premixed combustion concept on the other hand relies on dilution with high exhaust gas recirculation (EGR) rates to slow down the combustion which results in low exhaust temperatures, but also high mass flows over cylinder, valves, ports and manifolds. A careful design of the gas exchange system, EGR arrangement and heat exchangers is therefore of utter importance. Experiments were performed on a heavy-duty, compression ignition engine using a fuel consisting of 80 volume % 95 RON service station gasoline and 20 volume % n-heptane.
Technical Paper

Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

2017-10-08
2017-01-2262
Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline.
Technical Paper

Humid Air Motor: A Novel Concept to Decrease the Emissions Using the Exhaust Heat

2017-10-08
2017-01-2369
Humid air motor (HAM) is an engine operated with humidified inlet charge. System simulations study on HAM showed the waste heat recovery potential over a conventional system. An HAM setup was constructed, to comprehend the potential benefits in real-time, the HAM setup was built around a 13-litre six cylinder Volvo diesel engine. The HAM engine process is explained in detail in this paper. Emission analysis is also performed for all three modes of operation. The experiments were carried out at part load operating point of the engine to understand the effects of humidified charge on combustion, efficiency, and emissions. Experiments were conducted without EGR, with EGR, and with humidified inlet charge. These three modes of operation provided the potential benefits of each system. Exhaust heat was used for partial humidification process. Results show that HAM operation, without compromising on efficiency, reduces NOx and soot significantly over the engine operated without EGR.
Journal Article

Evaluation of Different Turbocharger Configurations for a Heavy-Duty Partially Premixed Combustion Engine

2017-09-04
2017-24-0164
The engine concept partially premixed combustion (PPC) has proved higher gross indicated efficiency compared to conventional diesel combustion engines. The relatively simple implementation of the concept is an advantage, however, high gas exchange losses has made its use challenging in multi-cylinder heavy duty engines. With high rates of exhaust gas recirculation (EGR) to dilute the charge and hence limit the combustion rate, the resulting exhaust temperatures are low. The selected boost system must therefore be efficient which could lead to large, complex and costly solutions. In the presented work experiments and modelling were combined to evaluate different turbocharger configurations for the PPC concept. Experiments were performed on a multi-cylinder engine. The engine was modified to incorporate long route EGR and a single-stage turbocharger, however, with compressed air from the building being optionally supplied to the compressor.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Technical Paper

Control-Oriented Modeling of Soot Emissions in Gasoline Partially Premixed Combustion with Pilot Injection

2017-03-28
2017-01-0511
In this paper, a control-oriented soot model was developed for real-time soot prediction and combustion condition optimization in a gasoline Partially Premixed Combustion (PPC) Engine. PPC is a promising combustion concept that achieves high efficiency, low soot and NOx emissions simultaneously. However, soot emissions were found to be significantly increased with high EGR and pilot injection, therefore a predictive soot model is needed for PPC engine control. The sensitivity of soot emissions to injection events and late-cycle heat release was investigated on a multi-cylinder heavy duty gasoline PPC engine, which indicated main impact factors during soot formation and oxidation processes. The Hiroyasu empirical model was modified according to the sensitivity results, which indicated main influences during soot formation and oxidation processes. By introducing additional compensation factors, this model can be used to predict soot emissions under pilot injection.
Technical Paper

Influence of Small Pilot on Main Injection in a Heavy-Duty Diesel Engine

2017-03-28
2017-01-0708
Factors influencing the effect of pilot-injection on main-injection combustion were investigated using heat release analysis in a heavy-duty diesel engine fuelled with standard diesel fuel, and included the effect of those factors on engine performance and emissions. Combinations of pilot injection parameters i.e. pilot start of injection, pilot mass, pilot-main injection separation, and rail pressure were studied for various operating conditions and combustion phases. It was concluded that the effect of pilot-injection combustion on main injection can be studied based on the phase of pilot combustion at the start of main injection. Four cases were identified: a) main injection during the mixing phase of pilot injection; b) main injection during the premixed phase of pilot combustion; c) main injection during the diffusive phase of pilot combustion and d) main injection after pilot combustion was completed.
Journal Article

Investigation of Small Pilot Combustion in a Heavy-Duty Diesel Engine

2017-03-28
2017-01-0718
Factors influencing pilot-injection combustion were investigated using heat release analysis in a heavy-duty diesel engine fuelled with standard diesel fuel. Combinations of pilot-injection parameters i.e. pilot start of injection, pilot mass, pilot-main injection separation, and rail pressure were studied for various operating conditions and combustion phases. An experiment was designed to investigate the factors influencing the combustion of the pilot. For improved injected fuel-mass accuracy, reference data for the injectors were measured in a spray rig prior to the engine experiments. Results show that cycle-to-cycle variations and cylinder-to-cylinder variations influence pilot autoignition and the amount of heat released. Rail pressure and injected pilot mass affect the obtained variance depending on the chamber conditions. The obtained combustion modes (premixed, diffusive) of pilot combustion were found to be a function of the injected mass and rail pressure.
X