Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Hybrid Laminated Panels Addressing Acoustic Issues in Vehicles

2021-08-31
2021-01-1086
Laminated steel body panels are used in different applications in vehicles, such as dash panels and wheel wells. A part made out of laminated steel has the potential to provide structure-borne noise reduction and also improve the airborne noise reduction of the part compared to a monolithic part. The use of laminated steel has been more critical when there are deep draws on the part as the deep draws cause localized resonances which degrade the acoustic performance significantly. However, due to lightweighting demands, hybrid laminated panels, commonly known as acoustic patch laminates have become very attractive. This paper discusses the damping and sound transmission loss performances of a dash panel part with monolithic, laminated, and acoustic patch panels.
Technical Paper

Development Work for a New Damping Standard SAE J3130

2021-08-31
2021-01-1122
Standards organizations develop standards depending on the need in the market place. With the change in vehicle design, lightweighting structures, and body panels made out of aluminum and composites, SAE’s Acoustical Materials Committee is developing a new damping standard. This standard is also very suitable in determining the damping performance of materials used in the off-highway applications, where the thickness of the steel body panel is much greater than in the automotive application. The general methodology of this standard is based on the mechanical impedance measurement method and has been developed with the general consensus of automotive engineers, suppliers, and independent test laboratories. This method is essentially based on the fact that a bar is excited at the center by a shaker. The force exerted by the shaker and the corresponding vibration is measured at that point to determine the frequency response function of the mechanical impedance signal.
Technical Paper

Developing a Custom Data Acquisition Software Package for a Self-contained Acoustic Test Facility

2019-06-05
2019-01-1501
This paper provides an overview of a custom software developed to obtain measurement data in a self-contained acoustic test facility system used for conducting random incidence sound absorption tests and sound transmission loss tests on small samples in accordance with SAE J2883 and J1400 standards, respectively. Special features have been incorporated in the software for the user to identify anomalies due to extraneous noise intrusion and thereby to obtain good data. The paper discusses the thoughts behind developing user-friendly algorithms and graphical user interfaces (GUI) for the sound generation, control, data acquisition, signal processing, and identifying anomalies.
Technical Paper

Mechanical Impedance Based Vibration Damping Test

2017-06-05
2017-01-1879
Traditionally, the damping performance of a visco-elastic material is measured using the Oberst bar damping test, where a steel bar is excited using a non-contacting transducer. However, in an effort to reduce the weight of the vehicles, serious effort is put in to change the body panels from steel to aluminum and composite panels in many cases. These panels cannot be excited using a non-contacting transducer, although, in some cases, a very thin steel panel (shim) is glued to the vibrating bar to introduce ferrous properties to the bar so it can be excited. In the off highway vehicles, although the panels are made of steel, they are very thick and are difficult to excite using the Oberst bar test method. This paper discusses a measurement methodology based on mechanical impedance measurements and has the potential to be a viable/alternate test method to the Oberst bar testing. In the impedance method, the test bar is mounted to a shaker at the center (Center Point method).
Technical Paper

A Modal Study of Damping Treatments to Improve Low Frequency Sound Transmission Loss of a Structure

2017-06-05
2017-01-1852
Most of NVH related issues start from the vibration of structures where often the vibration near resonance frequencies radiates the energy in terms of sound. This phenomenon is more problematic at lower frequencies by structureborne excitation from powertrain or related components. This paper discusses a laboratory based case study where different visco-elastic materials were evaluated on a bench study and then carried on to a system level evaluation. A body panel with a glazing system was used to study both airborne and structureborne noise radiation. System level studies were carried out using experimental modal analysis to shift and tune the mode shapes of the structure using visco-elastic materials with appropriate damping properties to increase the sound transmission loss. This paper discusses the findings of the study where the mode shapes of the panel were shifted and resulted in an increase in sound transmission loss.
Technical Paper

Some Thoughts on Dissipative Sound Package Systems

2017-06-05
2017-01-1815
This paper discusses the importance of a dissipative sound package system in the automotive industry and how it works. Although this is not a new technique at this stage, it is still a challenge to meet the subsystem target levels that were originally developed for parts based on the barrier decoupler concept. This paper reviews the typical construction of a dissipative system and then emphasizes the importance of different layers of materials that are used in the construction, including what they can do and cannot do. The paper also discusses the importance of the proper manufacturing of a part.
Technical Paper

SAE and Other Standards for Determining Acoustical Properties of Sound Package Materials

2015-06-15
2015-01-2207
Test standards are essential for evaluating the performance of a product properly and for developing a data base for the product. This paper discusses various standards that are available for determining the acoustical performance of sound package materials. The paper emphasizes various SAE standards that are available in this area, the reasons why these standards are important to the researchers working in the mobility industry, the history behind the development of these standards, and how they are different from standards that are available from other standards organization on similar topics.
Technical Paper

The Thought Process for Developing Sound Package Treatments for a Vehicle

2011-05-17
2011-01-1679
This paper discusses the thought process that one needs to go through for developing an appropriate sound package treatment for a vehicle. In the development process one needs to put proper emphasis on understanding the source, path, and the receiver system. One needs to have an understanding on how to reduce the noise at the source, path, and/or receiver location. One may need to conduct a feasibility study of the benefits of various noise control options. In terms of sound package treatments one needs to understand the fundamentals of acoustical materials how they work and why one material performs differently than another one, as well as the importance of a well documented specification that every supplier has to meet.
Technical Paper

Predicting the Acoustical Performance of Weak Paths in a Sound Package System

2005-05-16
2005-01-2520
The presence of any weak paths or leakage limits the best design and the acoustical performance of a sound package system in a vehicle. Techniques to predict the response at the design level could help in improving the performance of the sound package system. This paper discusses the development, verification, and implementation of an analytical technique for predicting the acoustical performance of a sound package system based on the principles of sound transmission coefficient and the surface area covered by each sub-system. This technique is especially suitable for predicting the acoustical performance of a weak path created by passthroughs or plugs in a sound package system. Initially, a simple system was developed and studied to verify the model. The predicted values were compared with the measured values. Based on the comparison, different parameters were identified and modified such that the model agrees closely with the measured data.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Tool for Predicting Interior Sound Package Treatment in a Truck

2001-11-12
2001-01-2807
This paper discusses an analytical tool that has been developed to predict what types of interior sound package treatments may be necessary in a truck cab to meet a predetermined target sound level at the driver location. The steps that were taken to develop this tool involved a combination of experimental measurement and analytical based studies. Measurements were conducted to identify the acoustic strengths of the major noise paths through which sound travels from outside to inside the truck. These findings were then used to develop a sound package that reduced the vehicle interior noise to meet the target. Measurements were primarily made on a chassis roll dynamometer with final road verification to substantiate the dynamometer data. Data obtained from these measurements were also used in the analytical model that predicts the impact of various acoustics parts in the vehicle, and has the capability to optimize the sound package treatment in the vehicle.
Technical Paper

Development of Quiet Sound Package Treatments for Class 8 Trucks

2001-04-30
2001-01-1541
This paper focuses on the development of treatments to control airborne noise through the dash panel. For a noise control material supplier, these treatments can be the most challenging to design because of the number of pass-throughs and design constraints. The dash panel development process includes extensive in-truck testing and analysis to identify sound paths (location and magnitude) and establish design criteria, laboratory material testing to aid in the selection of appropriate materials, laboratory component testing to select areas requiring treatment and to design the shape of the treatments, and in-truck testing to verify the performance of the new treatments.
Technical Paper

Understanding Laboratory Versus In-Vehicle Performance of Sprayable and Sheet Applied Damping Materials

2001-04-30
2001-01-1465
Liquid spray applied damping materials have potential advantages over conventional sheet damping materials in automotive body panel vibration applications. In order to understand the acoustical impact, a laboratory based NVH study was conducted to compare the damping and stiffness performance characteristics of various sprayable damping materials versus the production damping treatment. Based on this comparison, a criteria was developed to select potentially viable sprayable damping materials for vehicle testing. In-vehicle tests were also performed and compared to the laboratory findings to understand how well the results correlate. This paper discusses a criteria for selecting sprayable damping materials based on bench-top tests for vehicle applications, and the potential benefits of sprayable materials.
Technical Paper

A Novel Method and Product to Damp Cylindrical Articles: Constrained Layer Damping Tubing

1999-05-17
1999-01-1676
Constrained layer damping (CLD) is a well known technique to efficiently damp low frequency vibration. CLD employs a viscoelastic material sandwiched between two very stiff, typically metal, layers. While effective over essentially flat surfaces, CLD has not been applicable to cylindrical shapes. In order to damp low frequency vibration in metal pipes, users have been forced to rely on extensional layer damping, typically consisting of thick layers of extruded or molded rubbers. This paper discusses a novel product to damp cylindrical articles such as metal pipes with a constrained layer heat shrink tubing. This product utilizes a stiff heat shrinkable polymeric jacket bonded on the inside with a viscoelastic layer. When shrunk on a metal pipe or rod, a CLD system is produced. The product is typically thinner than an extensional layer damper and is more effective. It also meets the other physical and environmental requirements for a pipe covering.
Technical Paper

Acoustical Performance Testing of Automotive Weatherseals

1993-05-01
931270
Advances in vehicle noise control are leading the automotive industry to place increasing emphasis on weatherseals to block exterior noise. As a result, properly evaluating the acoustical performance of automotive weatherseals is of increasing importance. There is no current specific standard for this testing. Rather, there has been reliance on adaptations of SAE Standard 51400 “Laboratory Measurement of the Airborne Sound Barrier Performance of Automotive Materials and Assemblies” by testing laboratories. However, the 51400 standard addresses testing of flatstock materials and does not readily lend application to pre-formed parts such as weatherseals. For this reason, adaptation of the standard can vary significantly from facility to facility and manufacturer to manufacturer. These differences can be significant and can render comparisons between test results on competing materials very difficult.
Technical Paper

The Thought and Reasoning Behind Developing SAE J1637 - Vibration Damping Test Method

1993-05-01
931320
The paper discusses the importance of a well documented standardized laboratory test procedure to evaluate damping material performance for the automotive industry, and to understand the parameters that influence the precision of the test method. The standard outlines a methodology which was developed with the general consensus of automotive engineers, suppliers, and independent test laboratories. The methodology is based on the Oberst bar test method where a damping material is bonded to a specific size steel bar and the system is excited at its various modes of vibration under a cantilevered configuration. The damping performance is expressed in terms of composite loss factor, ηc, within the frequency range of approximately 100 Hz to 1000 Hz, and over the useful range of temperatures for the given application.
Technical Paper

Automotive Testing Requirements in the Design of a Reverberation Chamber

1993-05-01
931290
The purpose of this paper is to identify various concerns that need to be evaluated prior to the design and construction of a reverberation chamber, such that the chamber can be used for various automotive related acoustical measurements. Some of the concerns involve issues such as room shape and size, the degree of sound and vibration isolation required, the use of conventional building materials versus traditional massive construction, construction cost, and the performance requirements for the test noise generation system. Various uses of a reverberation chamber include random incidence sound absorption measurements, small sample sound transmission loss measurements, vehicle insertion loss tests, dash panel, door, and other “buck” evaluation tests, and sound power level measurements of small automotive components and devices. These uses have differing and in some cases conflicting requirements that compete in the selection of room design parameters.
X