Refine Your Search

Topic

Search Results

Standard

Crankcase Emission Control Test Code

2012-01-23
CURRENT
J900_201201
The purpose of this SAE STandard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a. The flow rate of the blowby of an engine; b. The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology; 4. Test Equipment; 5. Test Procedures; 6. Information and Data to be Recorded; 7. Data Analysis; 8. Presentation of Information and Data.
Standard

Constant Volume Sampler System for Exhaust Emissions Measurement

2011-09-06
CURRENT
J1094_201109
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

Emissions Terminology and Nomenclature

2011-09-06
CURRENT
J1145_201109
This SAE Recommended Practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
Standard

Impact of Alternative Fuels on Engine Test and Reporting Procedures

2011-09-06
CURRENT
J1515_201109
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

Measurement of Intake Air or Exhaust Gas Flow of Diesel Engines

2011-06-13
CURRENT
J244_201106
This procedure establishes recommendations on the measurement of diesel engine intake air flow under steady-state test conditions. The measurement methods discussed have been limited to metering systems and associated equipment found in common usage in the industry, specifically, nozzles, laminar flow devices, and vortex shedding. The procedure establishes accuracy goals as well as explains proper usage of equipment. The recommendations concerning diesel engine exhaust mass flow measurements are minimal in scope.
Standard

Instrumentation and Techniques for Exhaust Gas Emissions Measurement

2011-06-10
CURRENT
J254_201106
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). A complete procedure for testing vehicles may be found in SAE J1094. This document includes the following sections: 1. Scope 2. References 3. Emissions Sampling Systems 4. Emissions Analyzers 5. Data Analysis 6. Associated Test Equipment 7. Test Procedures
Standard

Diesel Engine Emission Measurement Procedure

2002-10-21
CURRENT
J1003_200210
This SAE Recommended Practice is intended for use as a test procedure to determine the gaseous emission level of diesel engines. Its purpose is to provide a map of an engine's emissions characteristics which, through use of the proper weighing factors, can be used as a measure of that engine's emission levels under various applications. The emission results for hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide are expressed in units of grams per kilowatt hour (grams/brake horsepower hour) and represent the mass rate of emissions per unit of work accomplished. The emissions are measured in accordance with SAE Recommended Practices J177, J215, and J244 using nondispersive infrared equipment for CO and CO2, a heated flame ionization analyzer for HC, and a high performance NDIR or a chemiluminescence analyzer for NO{sub}x. All emissions are measured during steady-state engine operation.
Standard

Emissions Terminology and Nomenclature

2002-10-21
HISTORICAL
J1145_200210
This SAE Recommended Practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
Standard

Continuous Hydrocarbon Analysis of Diesel Emissions

2002-10-21
CURRENT
J215_200210
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented. This SAE Recommended Practice provides for the continuous measurement of the hydrocarbon concentration in diesel exhaust.
Standard

Measurement of Carbon Dioxide, Carbon Monoxide, and Oxides of Nitrogen in Diesel Exhaust

2002-10-21
CURRENT
J177_200210
The method presented applies to the analysis of the indicated constituents in diesel engine exhaust, or vehicles using diesel engines, when operating at steady-state conditions. The measurements of carbon monoxide, carbon dioxide, and nitric oxide are based on continuous sampling and analysis by nondispersive infrared (NDIR) methods. Measurement of total oxides of nitrogen by chemiluminescence and NDIR methods is discussed. This SAE Recommended Practice provides for the measurement of carbon dioxide, carbon monoxide, and oxides of nitrogen in diesel exhaust.
Standard

Engine Testing with Low-Temperature Charge Air-cooler Systems in a Dynamometer Test Cell

2002-10-21
HISTORICAL
J1937_200210
The methods presented in this SAE Recommended Practice apply to the controlled testing of low-temperature charge, air-cooled, heavy-duty diesel engines. This document encompasses the following main sections: a Definitions of pertinent parameters b Vehicle testing to determine typical values for these parameters c Description of the setup and operation of the test cell system d Validation testing of the test cell system While not covered in this document, computer modeling of the vehicle engine cooler system is recognized as a valid tool to determine cooler system performance and could be utilized to supplement the testing described. However, adequate in-vehicle testing should be performed to validate the model before it is used for the purposes outlined. The procedure makes references to test cycles that are prescribed by the United States Environmental Protection Agency (US EPA) and are contained in the Code of Federal Regulations.
Standard

CRANKCASE EMISSION CONTROL TEST CODE

1995-03-02
HISTORICAL
J900_199503
The purpose of this SAE Standard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a The flow rate of the blowby of an engine b The flow rates through the crankcase emission control system inlet and outlet This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology 4. Test Equipment 5. Test Procedures 6. Information and Data to be Recorded 7. Data Analysis 8. Presentation of Information and Data
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1995-03-01
HISTORICAL
J215_199503
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

Diesel Smoke Measurement Procedure

1995-03-01
HISTORICAL
J35_199503
This SAE Recommended Practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading, and calculation for evaluation of an engine's transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine's transient smoke characteristics.
Standard

DIESEL ENGINE SMOKE MEASUREMENT

1995-02-24
HISTORICAL
J255_199502
Measurement of diesel smoke in an accurate and consistent manner has been a serious problem for engine and vehicle manufacturers, users, and agencies charged with enforcing smoke limits. Several instruments, based on different principles and using different scales, are commonly used. In addition to these, human observation and judgment are often used to relate smoke to a variety of standards. The purpose of this SAE Information Report is to provide an understanding of the nature of diesel smoke, how it can be measured, and how the various measurement methods can be correlated. Except for defining the various types of smoke, the report deals solely with the steady-state measurement of visible, black smoke emitted from diesel engines. For the benefit of those who wish to study various aspects of the subject in greater depth, a list of useful references is included in Section 2. This document is divided into the following sections:
Standard

INSTRUMENTATION AND TECHNIQUES FOR EXHAUST GAS EMISSIONS MEASUREMENT

1993-09-09
HISTORICAL
J254_199309
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). A complete procedure for testing vehicles may be found in SAE J1094. This document includes the following sections: 1 Scope 2 References 3 Emissions Sampling Systems 4 Emissions Analyzers 5 Data Analysis 6 Associated Test Equipment 7 Test Procedures
Standard

INSTRUMENTATION AND TECHNIQUES FOR VEHICLE REFUELING EMISSIONS MEASUREMENT

1993-05-01
HISTORICAL
J1045_199305
This SAE Recommended Practice describes a procedure for measuring the hydrocarbon emissions occurring during the refueling of passenger cars and light trucks. It can be used as a method for investigating the effects of temperatures, fuel characteristics, etc., on refueling emissions in the laboratory. It also can be used to determine the effectiveness of evaporative emissions control systems to control refueling emissions. For this latter use, standard temperatures, fuel volatility, and fuel quantities are specified.
Standard

MEDIUM- AND HEAVY-DUTY TRUCK CONVERTER/MUFFLER CONFIGURATION

1993-02-19
HISTORICAL
J1642_199302
This SAE Draft Technical Report is intended to document the technical consensus of the current design state of converter/mufflers for heavy-duty emission classification diesel vehicle applications. This will maximize standardization and promote interchangeability of parts from different manufacturers.
Standard

EMISSIONS TERMINOLOGY AND NOMENCLATURE

1993-02-01
HISTORICAL
J1145_199302
This SAE Recommended Practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
X