Refine Your Search

Topic

Search Results

Technical Paper

Understanding Interaction between Reactive Jets in Pre-Chamber Ignition of Gaseous Fuel

2023-04-11
2023-01-0225
In order to improve the ignition capacity and burning rate for spark-ignited engines, pre-chamber jet ignition is a promising technique to achieve fast premixed combustion and low pollutant emissions. However, few studies focus on the interaction between multiple reacting (i.e. flamelet) or reacted (i.e. radical) jets, its effect on ignition, exotherm and flow behaviors also remain to be revealed. This paper investigated two types of jet interaction under different pre-chamber structures, including the jet-crossing and unequal nozzle designs. Optical experiments under different conditions were conducted in a constant volume combustion chamber with CH4 as fuel, using simultaneous high speed schlieren and OH* chemiluminescence method. Meanwhile, computational fluid dynamics (CFD) simulations with CH4 and NH3/CH4 blend fuels were carried out using Converge software to provide further insights of turbulent flow and ignition process.
Technical Paper

Effects of Octane Number and Sensitivity on Combustion of Jet Ignition Engine

2022-03-29
2022-01-0435
Octane number (ON) and octane sensitivity (S), the fuel anti-knock indices, are critical for the design of advanced jet ignition engines. In this study, ten fuels with different research octane number (RON) and varying S were formulated based on ethanol reference fuels (ERFs) to investigate the effect of S on combustion of jet ignition engine. To fully understand S effects, the combustion characteristics under EGR dilution and lean burn were further investigated. The results indicated that increasing S resulted in higher reactivity with shorter ignition delay and combustion duration. The increase of reactivity led to heavier knocking intensity. The competition between the flame speed and the reactivity of the mixture determined the auto-ignition fraction of mixture and the knocking onset crank angle as S varied. Medium S (S=3) was helpful to improve the combustion speed, reduce the auto-ignition fraction of mixture and retard the knocking onset crank angle.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
Technical Paper

Effect of Single and Double-Deck Pre-Chamber Designs to the Combustion Characteristics of Premixed CH4 /Air

2018-09-10
2018-01-1688
An experiment was carried out to investigate the effect of single and double-deck pre-chamber on the combustion characteristics of premixed CH4/air in a constant volume vessel using schlieren method. A special design was proposed for the visualization of the pre-chamber. Combustion with different initial temperatures (300 K, 400 K, 500 K) were observed at stoichiometric ratio to lean-burn limit. Although single-deck pre-chamber has advantages over double-deck pre-chamber in both initial flame development duration and main combustion duration, the latter could extend the lean-burn limit by up to 0.3 and promote the stability of ignition. It is also found that extensive distribution of active species in main chamber before ignition can accelerate speed of flame propagation enormously.
Technical Paper

Numerical Investigation on the Effect of Fuel Temperature on Spray Collapse and Mixture Formation Characteristics in GDI Engines

2018-04-03
2018-01-0311
Spray atomization, spray-wall impingement, and mixture formation are key factors in affecting the particulate matter (PM) emission in gasoline direct injection (GDI) engines. Current knowledge of wall-wetting phenomenon and mixture formation are mostly based on the studies that the fuel is injected at ordinary temperature and various ambient conditions. In the real GDI engine, the fuel pipe and injector are always heated up by the pump and the engine body, especially at hot engine conditions, thus the fuel temperature is always higher than the ordinary temperature, and the relevant research is still limited. The aim of this study is to numerically investigate the spray, spray-wall impingement, and mixture formation characteristics under different fuel temperature conditions, so as to provide theoretical support in optimizing the combustion performance and further reducing the PM emission of GDI engines.
Technical Paper

Experimental Study of Lean Mixture Combustion at Ultra-High Compression Ratios in a Rapid Compression Machine

2018-04-03
2018-01-1422
In order to meet increasingly stringent fuel consumption and emission regulations, more attentions are paid to improve engine efficiency. A large amount of energy-saving technologies have been applied in automotive field especially in gasoline engines. It is well known that lean burn and ultra-high compression ratio technologies are two basic and important methods to increase efficiency. In this paper, a rapid compression machine was employed to study combustion process of lean iso-octane mixture at ultra-high compression ratios (16 to 19:1). Regardless of flammability of the mixture, spark was triggered at the timing right after the end of compression, then, the flame propagation and/or auto-ignition can be recorded using high-speed photography simultaneously. The effects of equivalence ratio (φ), compression ratio (ε), dilution ratio, and effective temperature (Teff) on the combustion process was investigated.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

The Impact of GDI Injector Deposits on Engine Combustion and Emission

2017-10-08
2017-01-2248
Gasoline direct injection (GDI) engine technology is now widely used due to its high fuel efficiency and low CO2 emissions. However, particulate emissions pose one challenge to GDI technology, particularly in the presence of fuel injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in the Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 55 hours to accumulate injector deposits. The engine spark timing, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gaseous pollutants which include total hydro carbon (THC), NOx (NO and NO2) and carbon dioxide (CO), and particulate emissions were measured before and after the injector fouling test at eight different operating conditions. Test results indicated that mild injector fouling can result in an effect on engine combustion and emissions despite a small change in injector flow rate and pulse width.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

The Impact of Fuel Properties from Chinese Market on the Particulate and VOCs Emissions of a PFI and a DIG Engine

2016-04-05
2016-01-0838
An experimental study of particulate matter and volatile organic compounds (VOCs) emissions was conducted on a direct injection gasoline (DIG) engine and a port fuel injection (PFI) engine which both were produced by Chinese original equipment manufacturers (OEMs) to investigate the impact of fuel properties from Chinese market on particulate and VOCs emissions from modern gasoline vehicles. The study in this paper is just the first step of the work which is to investigate the impact of gasoline fuel properties and light duty vehicle technologies on the primary and secondary emissions, which are the sources of particulate matter 2.5 (PM2.5) in the atmosphere in China. It is expected through the whole work to provide some suggestions and guidelines on how to improve air quality and mediate severe haze pollution in China through fuel quality control and vehicle technology advances.
Technical Paper

Development of a Turbulence-induced Breakup Model for Gasoline Spray Simulation

2015-04-14
2015-01-0939
The design and optimization of a modern spray-guided gasoline direct injection engine require a thorough understanding of the fuel spray characteristics and atomization process. The fuel spray Computational Fluid Dynamics (CFD) modeling technology can be an effective means to study and predict spray characteristics, and as a consequence, to drastically reduce experimental work during the engine development process. For this reason, an accurate numerical simulation of the spray evolution process is imperative. Different models based on aerodynamically-induced breakup mechanism have been implemented to simulate spray atomization process in earlier studies, and the effect of turbulence from the injector nozzle is recently being concerned increasingly by engine researchers. In this study, a turbulence-induced primary breakup model coupled with aerodynamic instability is developed.
Technical Paper

Impacts of Cold-Start and Gasoline RON on Particulate Emission from Vehicles Powered by GDI and PFI Engines

2014-10-13
2014-01-2836
An experimental study of particulate matter (PM) emission was conducted on four cars from Chinese market. Three cars were powered by gasoline direct injection (GDI) engines and one car was powered by a port fuel injection (PFI) engine. Particulate mass, number and size distribution were measured based on a chassis dynamometer over new European driving cycle (NEDC). The particulate emission behaviors during cold start and hot start NEDCs were compared to understand how the running conditions influence particulate emission. Three kinds of gasoline with RON 91.9, 94.0 and 97.4 were tested to find the impact of RON on particulate emission. Because of time and facilities constraints, only one cold/hot start NEDC was conducted for every vehicle fueled with every fuel. The test results showed that more particles were emitted during cold start condition (first 200s in NEDC). Compared with cold start NEDC, the particulate mass and number of hot start NEDC decreased by a wide margin.
Technical Paper

Study of Engine Knock in HCCI Combustion using Large Eddy Simulation and Complex Chemical Kinetics

2014-10-13
2014-01-2573
This paper studied the knock combustion process in gasoline HCCI engines. The complex chemical kinetics was implemented into the three-dimensional CFD code with LES (Large eddy simulation) to study the origin of the knock phenomena in HCCI combustion process. The model was validated using the experimental data from the cylinder pressure measurement. 3D-CFD with LES method gives detailed turbulence, species, temperature and pressure distribution during the gasoline HCCI combustion process. The simulation results indicate that HCCI engine knock originates from the random multipoint auto-ignition in the combustion chamber due to the slight inhomogeneity. It is induced by the significantly different heat release rate of high temperature oxidation (HTO) and low temperature oxidation (LTO) and their interactions.
Technical Paper

A Turbulence and Cavitation Induced Breakup Model for Fuel Spray Modeling

2014-10-13
2014-01-2737
Fuel spray atomization process is known to play a key role in affecting mixture formation, combustion efficiency and soot emissions in direct injection engines. The fuel spray Computational Fluid Dynamics (CFD) modeling technology can be an effective means to study and predict spray characteristics such as penetration, droplet size and droplet velocity, and as a consequence, to drastically reduce experimental work during the engine development process. For this reason, an accurate numerical simulation of the spray evolution process is imperative. Different approaches and various models based on aerodynamically induced breakup mechanism have been implemented to simulate spray atomization process in earlier studies, and the effects of turbulence and cavitation from the injector nozzle is recently being concerned increasingly by engine researchers. In this study, an enhanced turbulence and cavitation induced primary breakup model combining aerodynamic breakup mechanism is developed.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Technical Paper

Experimental Study of Catalyzed Diesel Particulate Filter with Exhaust Fuel Injection System for Heavy-Duty Diesel Engines

2014-04-01
2014-01-1496
The diesel particulate filter (DPF) is an effective technology for particulate matter (PM) and particle number (PN) reduction. On heavy-duty diesel engines, the passive regeneration by Diesel Oxidation catalysts (DOC) and catalyzed DPFs (CDPF) is widely used for its simplicity and low cost, which is generally combined with the active regeneration of exhaust fuel injection. This study investigated a DOC-CDPF system with exhaust fuel injection upstream of the DOC. The system was integrated with a 7-liter diesel engine whose engine-out PM emission was below the Euro IV level and tested on an engine dynamometer. PM and PN concentrations were measured based on the Particle Measurement Programme (PMP), and the number/size spectrum for particles was obtained by a Differential Mobility Spectrometer (DMS). The filtration efficiency of DPF on PN was higher than 99% in ESC test, while the efficiency on PM was only 58%.
Journal Article

Impact of Octane Number on Fuel Efficiency of Modern Vehicles

2013-10-14
2013-01-2614
Fuel quality, including antiknock rating, plays a critical role in enabling optimal operation of advanced gasoline engines. As new designs introduced into the market implement technologies to improve fuel efficiency, the overall octane level of the gasoline pool may need to be increased to ensure optimal performance. Turbocharging, higher compression ratios and downsized displacement all lead to higher combustion pressures and temperatures that make engines more susceptible to knocking. All modern gasoline engines are equipped with knock sensors that detect abnormal combustion resulting from autoignition caused by insufficient octane quality. The ability of an engine to account for the use of lower octane fuel by retarding spark timing and enriching air-fuel ratio to reduce knock is limited, and engine efficiency is directly and adversely impacted when the use of lower octane gasoline is accommodated, resulting in higher fuel consumption.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

High Efficiency and Low Pollutants Combustion: Gasoline Multiple Premixed Compression Ignition (MPCI)

2012-04-16
2012-01-0382
A new combustion mode namely multiple premixed compression ignition (MPCI) for gasoline engines was proposed. The MPCI mode can be realized by two or more times gasoline injections into cylinder with a high pressure around the compression TDC and featured with a premixed combustion after each injection in the cylinder, which is different from the existed gasoline direct injection compression ignition (GDICI) modes such as homogeneous charge compression ignition (HCCI) mode with gasoline injection occurred in intake stroke, and partially premixed compression ignition (PPCI) mode with multiple gasoline injections in intake and compression strokes before the start of combustion (SOC). Therefore the spray and combustion of the MPCI mode are alternatively occurred as "spray-combustion-spray-combustion" near the TDC, rather than "spray-spray-combustion" sequence as traditional PPCI gasoline engines.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
X