Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

Effect of Intake Pressure and Temperature on the Auto-Ignition of Fuels with Different Cetane Number and Volatility

2012-04-16
2012-01-1317
This paper investigates the effect of boost pressure and intake temperature on the auto-ignition of fuels with a wide range of properties. The fuels used in this investigation are ULSD (CN 45), FT-SPK (CN 61) and two blends of JP-8 (with CN 25 and 49). Detailed analysis of in-cylinder pressure and rate of heat release traces are made to correlate the effect of intake pressure and injection strategy on the events immediately following start of injection leading to combustion. A CFD model is applied to track the effect of intake pressure and injection strategy on the formation of different chemical species and study their role and contribution in the auto-ignition reactions. Results from a previous investigation on the effect of intake temperature on auto-ignition of these fuels are compared with the results of this investigation.
Technical Paper

Effect of Using Biodiesel (B-20) and Combustion Phasing on Combustion and Emissions in a HSDI Diesel Engine

2011-04-12
2011-01-1203
The use of biodiesel and its blends with ultra low sulfur diesel (ULSD) is gaining significant importance due to its ability to burn in conventional diesel engines with minor modifications. However the chemical and physical properties of biodiesel are different compared to the conventional ULSD. These differences directly impact the injection, spray formation, auto ignition and combustion processes which in turn affect the engine-out emissions. To understand the effect of fueling with B-20, tests were conducted on a single cylinder 0.42L direct injection research diesel engine. The engine is equipped with a common rail injection system, variable EGR and swirl control systems and was operated at a constant engine speed of 1500 rpm and 3 bar IMEP to simulated turbocharged conditions. Injection timing and duration were adjusted with B-20 at different locations of peak premixed combustions (LPPC) and two different swirl ratios to achieve 3 bar IMEP.
Technical Paper

Effect of Biodiesel and its Blends on Particulate Emissions from HSDI Diesel Engine

2010-04-12
2010-01-0798
The effect of biodiesel on the Particulate emissions is gaining significant attention particularly with the drive for the use of alternative fuels. The particulate matter (PM), especially having a diameter less than 50 nm called the Nanoparticles or Nucleation mode particles (NMPs), has been raising concerns about its effect on human health. To better understand the effect of biodiesel and its blends on particulate emissions, steady state tests were conducted on a small-bore single-cylinder high-speed direct-injection research diesel engine. The engine was fueled with Ultra-Low Sulfur Diesel (ULSD or B-00), a blend of 20% soy-derived biodiesel and 80% ULSD on volumetric basis (B-20), B-40, B-60, B-80 and 100% soy-derived biodiesel (B-100), equipped with a common rail injection system, EGR and swirl control systems at a load of 5 bar IMEP and constant engine speed of 1500 rpm.
Technical Paper

Comparison between Combustion, Performance and Emission Characteristics of JP-8 and Ultra Low Sulfur Diesel Fuel in a Single Cylinder Diesel Engine

2010-04-12
2010-01-1123
JP-8 is an aviation turbine engine fuel recently introduced for use in military ground vehicle applications and generators which are mostly powered by diesel engines. Many of these engines are designed and developed for commercial use and need to be adapted for military applications. This requires more understanding of the auto- ignition and combustion characteristics of JP-8 under different engine operating conditions. This paper presents the results of a comparative analysis of an engine operation using JP-8 and ultra low sulfur diesel fuel (ULSD). Experiments were conducted on 0.42 liter single cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The results indicate that the distillation properties of fuel have an effect on its vaporization rate. JP-8 evaporated faster and had shorter ignition delay as compared to ULSD. The fuel economy with JP-8 was better than ULSD.
Technical Paper

Effect of Different Biodiesel Blends on Autoignition, Combustion, Performance and Engine-Out Emissions in a Single Cylinder HSDI Diesel Engine

2009-04-20
2009-01-0489
The effects of different blends of Soybean Methyl Ester (biodiesel) and ultra low sulfur diesel (ULSD) fuel: B-00 (ULSD), B-20, B-40, B-60, B-80 and B-100 (biodiesel); on autoignition, combustion, performance, and engine out emissions of different species including particulate matter (PM) in the exhaust, were investigated in a single-cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated at 1500 rpm under simulated turbocharged conditions at 5 bar IMEP load with varied injection pressures at a medium swirl of 3.77 w ithout EGR. Analysis of test results was done to determine the role of biodiesel percentage in the fuel blend on the basic thermodynamic and combustion processes under fuel injection pressures ranging from 600 bar to 1200 bar.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine

2008-04-14
2008-01-1071
This paper presents an experimental investigation conducted to determine the parameters that control the behavior of autoignition in a small-bore, single-cylinder, optically-accessible diesel engine. Depending on operating conditions, three types of autoignition are observed: a single ignition, a two-stage process where a low temperature heat release (LTHR) or cool flame precedes the main premixed combustion, and a two-stage process where the LTHR or cool flame is separated from the main heat release by an apparent negative temperature coefficient (NTC) region. Experiments were conducted using commercial grade low-sulfur diesel fuel with a common-rail injection system. An intensified CCD camera was used for ultraviolet imaging and spectroscopy of chemiluminescent autoignition reactions under various operating conditions including fuel injection pressures, engine temperatures and equivalence ratios.
Technical Paper

Effect of Biodiesel (B-20) on Performance and Emissions in a Single Cylinder HSDI Diesel Engine

2008-04-14
2008-01-1401
The focus of this study is to determine the effect of using B-20 (a blend of 20% soybean methyl ester biodiesel and 80% ultra low sulfur diesel fuel) on the combustion process, performance and exhaust emissions in a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated under simulated turbocharged conditions with 3-bar indicated mean effective pressure and 1500 rpm engine speed. The experiments covered a wide range of injection pressures and EGR rates. The rate of heat release trace has been analyzed in details to determine the effect of the properties of biodiesel on auto ignition and combustion processes and their impact on engine out emissions. The results and the conclusions are supported by a statistical analysis of data that provides a quantitative significance of the effects of the two fuels on engine out emissions.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

Effect of Injection Pressure and Swirl Motion on Diesel Engine-out Emissions in Conventional and Advanced Combustion Regimes

2006-04-03
2006-01-0076
The fuel injection pressure and the swirl motion have a great impact on combustion in small bore HSDI diesel engines running on the conventional or advanced combustion concepts. This paper examines the effects of injection pressure and the swirl motion on engine-out emissions over a wide range of EGR rates. Experiments were conducted on a single cylinder, 4-valve, direct injection diesel engine equipped with a common rail injection system. The pressures and temperatures in the inlet and exhaust surge tanks were adjusted to simulate turbocharged engine conditions. The load and speed of the engine were typical to highway cruising operation of a light duty vehicle. The experiments covered a wide range of injection pressures, swirl ratios and injection timings. Engine-out emission measurements included hydrocarbons, carbon monoxide, smoke (in Bosch Smoke Units, BSU) and NOx.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

Effect of Cycle-to-Cycle Variation in the Injection Pressure in a Common Rail Diesel Injection System on Engine Performance

2003-03-03
2003-01-0699
The performance of the Common Rail diesel injection system (CRS) is investigated experimentally in a single cylinder engine and a test rig to determine the cycle-to-cycle variation in the injection pressure and its effects on the needle opening and rate of fuel delivery. The engine used is a single cylinder, simulated-turbocharged diesel engine. Data for the different injection and performance parameters are collected under steady state conditions for 35 consecutive cycles. Furthermore, a mathematical model has been developed to calculate the instantaneous fuel delivery rate at various injection pressures. The experimental results supported with the model computations indicated the presence of cycle-to-cycle variations in the fuel injection pressure and needle lift. The variations in the peak-cylinder gas pressure, rate of heat release, cylinder gas temperature and IMEP are correlated with the variation in the injection rate.
Technical Paper

New Integrated “O.P.E.R.A.S.” Strategies for Low Emissions in HSDI Diesel Engines

2003-03-03
2003-01-0261
Integrated control strategies for the O.P.E.R.A.S. (Optimization of injection Pressure, EGR ratio, injection Retard or Advance and Swirl ratio) are demonstrated. The strategies are based on an investigation of combustion and emissions in a small bore, high speed, direct injection diesel engine. The engine is equipped with a common rail injection system and is tested under simulated turbocharged engine conditions at two loads and speeds that represent two key operating points in a medium size HEV vehicle. A new phenomenological model is developed for the fuel distribution in the combustion chamber and the fractions that are injected prior to the development of the flame, injected in the flame or deposited on the walls. The investigation covered the effect of the different operating parameters on the fuel distribution, combustion and engine-out emissions.
Technical Paper

Effect of EGR on Autoignition, Combustion, Regulated Emissions and Aldehydes in DI Diesel Engines

2002-03-04
2002-01-1153
In view of the new regulations for diesel engine emissions, EGR is used to reduce the NOx emissions. Diluting the charge with EGR affects the autoignition, combustion as well as the regulated and unregulated emissions of diesel engines, under different operating conditions. This paper presents the results of an investigation on the effect of EGR on the global activation energy and order of the autoignition reactions, premixed and mixing-controlled combustion fractions, the regulated (unburned hydrocarbons, NOx, CO and particulates), aldehydes, CO2 and HC speciation. The experiments were conducted on two different direct injection, four-stroke-cycle, single-cylinder diesel engines over a wide range of operating conditions and EGR ratios.
Technical Paper

Combustion Visualization of DI Diesel Spray Combustion inside a Small-Bore Cylinder under different EGR and Swirl Ratios

2001-05-07
2001-01-2005
An experimental setup using rapid compression machine to provide excellent optical access to visualize simulated high-speed small-bore direct injection diesel engine combustion processes is described. Typical combustion visualization results of diesel spray combustion under different EGR, swirl, and injection pressure and nozzle conditions are presented. Different swirl intensities are achieved using an air nozzle with variable orientations and a check valve to connect the compression chamber and the combustion chamber. Different EGR ratios are achieved by pre-injection of diesel fuel prior to the main observation sequence. Clear visualization of the high-pressure fuel injection, ignition, combustion and spray/wall/swirl interactions is obtained. The injection system is a high-pressure common-rail system with either a VCO or a mini-sac nozzle. High-speed movies up to 35,000 frame-per-second are taken using a framing drum camera to record the combustion events.
Technical Paper

Effect of Cetane Number with and without Additive on Cold Startability and White Smoke Emissions in a Diesel Engine

1999-05-03
1999-01-1476
I The effect of Cetane Number (CN) of the fuel and the addition of cetane improvers on the cold starting and white smoke emissions of a diesel engine was investigated. Tests were conducted on a single-cylinder, four-stroke-cycle, air-cooled, direct-injection, stand-alone diesel engine in a cold room at ambient temperatures ranging from 25 °C to - 5 °C. Five fuels were used. The base fuel has a CN of 49.2. The CN of the base fuel was lowered to 38.7 and 30.8 by adding different amounts of aromatic hydrocarbons. Iso-octyl nitrate is added to the high aromatic fuels in order to increase their CN to 48.6 and 38.9 respectively. Comparisons are made between the five fuels to determine the effect of CN and the additive on cylinder peak pressure, heat release rate, cold start-ability, combustion instability, hydrocarbon emissions and solid and liquid particulates.
Technical Paper

Emissions Comparisons of an Insulated Turbocharged Multi-Cylinder Miller Cycle Diesel Engine

1998-02-23
980888
The experimental emissions testing of a turbocharged six cylinder Caterpillar 3116 diesel engine converted to the Miller cycle operation was conducted. Delayed intake valve closing times were also investigated. Effects of intake valve closing time, injection time, and insulation of piston, head, and liner on the emission characteristics of the Miller cycle engine were experimentally verified. Superior performance and emission characteristic was achieved with a LHR insulated engine. Therefore, all emission and performance comparisons are made with LHR insulated standard engine with LHR insulated Miller cycle engine. Particularly, NOx, CO2, HC, smoke and BSFC data are obtained for comparison. Effect of increasing the intake boost pressure on emission was also studied. Poor emission characteristics of the Miller cycle engine are shown to improve with increased boost pressure. Performance of the insulated Miller cycle engine shows improvement in BSFC when compared to the base engine.
Technical Paper

White Smoke Emissions Under Cold Starting of Diesel Engines

1996-02-01
960249
More stringent regulations have been enforced over the past few years on diesel exhaust emissions. White smoke emission, a characteristic of diesel engines during cold starting, needs to be controlled in order to meet these regulations. This study investigates the sources and constituents of white smoke. The effects of fuel properties, design and operating parameters on the formation and emissions of white smoke are discussed. A new technique is developed to measure the real time gaseous hydrocarbons (HC) as well as the solid and liquid particulates. Experiments were conducted on a single cylinder direct injection diesel engine in a cold room. The gaseous HC emissions are measured using a high frequency response flame ionization detector. The liquid and solid particulates are collected on a paper filter placed upstream of the sampling line of the FID and their masses are determined.
X