Refine Your Search

Topic

Search Results

Journal Article

Post-Treatment and Hybrid Techniques for Prolonging the Service Life of Fused Deposition Modeling Printed Automotive Parts: A Wear Strength Perspective

2024-04-24
Abstract This study aims to explore the wear characteristics of fused deposition modeling (FDM) printed automotive parts and techniques to improve wear performance. The surface roughness of the parts printed from this widely used additive manufacturing technology requires more attention to reduce surface roughness further and subsequently the mechanical strength of the printed geometries. The main aspect of this study is to examine the effect of process parameters and annealing on the surface roughness and the wear rate of FDM printed acrylonitrile butadiene styrene (ABS) parts to diminish the issue mentioned above. American Society for Testing and Materials (ASTM) G99 specified test specimens were fabricated for the investigations. The parameters considered in this study were nozzle temperature, infill density, printing velocity, and top/bottom pattern.
Journal Article

Failure Analysis of Cryogenically Treated and Gas Nitrided Die Steel in Rotating Bending Fatigue

2024-04-24
Abstract AISI H13 hot work tool steel is commonly used for applications such as hot forging and hot extrusion in mechanical working operations that face thermal and mechanical stress fluctuations, leading to premature failures. Cryogenic treatment was applied for AISI H13 steel to improve the surface hardness and thereby fatigue resistance. This work involves failure analysis of H13 steel specimens subjected to cryogenic treatment and gas nitriding. The specimens were heated to 1020°C, oil quenched followed by double tempering at 550°C for 2 h, and subsequently, deep cryogenically treated at −185°C in the cryochamber. Gas nitriding was carried out for 24 h at 500°C for 200 μm case depth in NH3 surroundings. The specimens were subjected to rotating bending fatigue at constant amplitude loading at room temperature.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
Journal Article

Designing Manual Workplace Systems in Engineer-to-Order Enterprises to Improve Productivity: A Kano Analysis

2024-01-16
Abstract Being an engineer-to-order (ETO) operating industry, the control cabinet industry faces difficulties in process and workplace optimizations due to changing requirements and lot size one combined with volatile orders. To optimize workplaces for employees, current literature is focusing on ergonomic designs, providing frameworks to analyze workplaces, leaving out the optimal design for productivity. This work thus utilizes a Kano analysis, collecting empirical data to identify essential design requirements for assembly workplaces, incorporating input from switchgear manufacturing employees. The results emphasize the need for a balance between ergonomics and efficiency in workplace design. Surprisingly, few participants agree on the correlation between improved processes and workspaces having a positive impact on their well-being and product quality.
Journal Article

Energy-Efficient Dispatching of Battery Electric Truck Fleets with Backhauls and Time Windows

2023-12-22
Abstract The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging.
Journal Article

Effect of Two-Step Austempering Process on the Microstructure and Mechanical Properties of Low-Carbon Equivalent Austempered Ductile Iron

2023-12-01
Abstract Low-carbon equivalent austempered ductile iron (LCE-ADI) exhibits high modulus of elasticity than conventional austempered ductile iron (ADI) due to less graphite content. Austempering parameters of temperature and time significantly influence the mechanical properties of LCE-ADI. In the present work, response of the material to two-step austempering in the range of 350–450°C was studied, and a comparison was made to single-step austempering. Reduction in ferrite cell size, increase in % carbon in carbon-stabilized austenite (CSA) and increase in volume fraction of CSA led to increase in tensile strength (10%) and hardness (20%), in addition to improved toughness (10%).
Journal Article

Optimization of Takeaway Delivery Based on Large Neighborhood Search Algorithm

2023-11-09
Abstract The drone logistics distribution method, with its small size, quick delivery, and zero-touch, has progressively entered the mainstream of development due to the global epidemic and the rapidly developing global emerging logistics business. In our investigation, a drone and a delivery man worked together to complete the delivery order to a customer’s home as quickly as possible. We realize the combined delivery network between drones and delivery men and focus on the connection and scheduling between drones and delivery men using existing facilities such as ground airports, unmanned stations, delivery men, and drones. Based on the dynamic-vehicle routing problem model, the establishment of a delivery man and drone with a hybrid model, in order to solve the tarmac unmanned aerial vehicle for take-out delivery scheduling difficulties, linking to the delivery man and an adaptive large neighborhood search algorithm solves the model.
Journal Article

The Neutronic Engine: A Platform for Operando Neutron Diffraction in Internal Combustion Engines

2023-11-09
Abstract Neutron diffraction is a powerful tool for noninvasive and nondestructive characterization of materials and can be applied even in large devices such as internal combustion engines thanks to neutrons’ exceptional ability to penetrate many materials. While proof-of-concept experiments have shown the ability to measure spatially and temporally resolved lattice strains in a small aluminum engine on a timescale of minutes over a limited spatial region, extending this capability to timescales on the order of a crank angle degree over the full volume of the combustion chamber requires careful design and optimization of the engine structure to minimize attenuation of the incident and diffracted neutrons to maximize count rates.
Journal Article

Reducing Greenhouse Emissions from Light-Duty Vehicles: Supply-Chain and Cost-Effectiveness Analyses Suggest a Near-Term Role for Hybrids

2023-10-30
Abstract Policy makers generally favor all-electric vehicles over hybrid-electric vehicles because of greater unit effectiveness in reducing carbon emissions. Since both systems use lithium-ion batteries, global demand for batteries is projected to grow 10-fold by 2030. If any step in the global battery supply-chain experiences bottlenecks, shortages can occur. We use a novel cost-effectiveness metric, carbon reduction per unit of battery capacity consumed, to rank emissions reductions accomplished by, alternatively, eight plug-in hybrid-electric vehicles, 75 hybrid-electric vehicles, and 230 mild hybrid-electric vehicles, which have the same total battery capacity as one all-electric vehicle. Our main finding, although counterintuitive, is that, with limited battery supplies, larger reductions in carbon emissions can be accomplished by hybrids than by all-electric vehicles.
Journal Article

Contribution to the Objective Evaluation of Combined Longitudinal and Lateral Vehicle Dynamics in Nonlinear Driving Range

2023-10-19
Abstract Since the complexity of modern vehicles is increasing continuously, car manufacturers are forced to improve the efficiency of their development process to remain profitable. A frequently mentioned measure is the consequent integration of virtual methods. In this regard, objective evaluation criteria are essential for the virtual design of driving dynamics. Therefore, this article aims to identify robust objective evaluation criteria for the nonlinear combined longitudinal and lateral dynamics of a vehicle. The article focuses on the acceleration in a turn maneuver since available objective criteria do not consider all relevant characteristics of vehicle dynamics. For the identification of the objective criteria, a generic method is developed and applied. First, an open-loop test procedure and a set of potential robust objective criteria are defined.
Journal Article

Effect of Heat Treatment on Microstructure and Mechanical Properties of Medium-Carbon Steel Drawn Wire

2023-09-29
Abstract In this article, the effect of heat treatment on the microstructure and mechanical behavior of medium-carbon steel wire intended for the spring mattress is investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction, Vickers hardness (Hv), and tensile strength. The results indicate that the microstructure elongation along the wire axis is observed with the bending and kinking lamellae at the deformation level of 57.81%, this change appears as a fracture in the microstructure and leads to an increase in hardness, tensile strength, and intensities of diffraction patterns. After heat treatment, we observed a redistribution in the grain, which is almost the same in the wire rod and drawn wires; indeed, this led to a decrease in hardness, tensile strength, and augmentation in intensities of peaks. The EBSD pole figures reveal the development of texture in the cementite slip plane (001).
Journal Article

Conceptualizing an Urban Operations Vehicle within a Comprehensive Research and Development Program

2023-09-07
Abstract In the last decades we have witnessed an increasing number of military operations in urban environments. Complex urban operations require high standards of training, equipment, and personnel. Emergency forces on the ground will need specialized vehicles to support them in all parts and levels of this extremely demanding environment including the subterranean and interior of infrastructure. The development of vehicles for this environment has lagged but offers a high payoff. This article describes the method for developing a concept for an urban operations vehicle by characterization of the urban environment, deduction of key issues, evaluation of related prototyping, science fiction story-typing of the requirements for such a vehicle, and comparison with field-proven and scalable solutions. Embedding these thoughts into a comprehensive research and development program provides lines of development, setting the stage for further research.
Journal Article

Reliable Ship Emergency Power Source: A Monte Carlo Simulation Approach to Optimize Remaining Capacity Measurement Frequency for Lead-Acid Battery Maintenance

2023-07-14
Abstract The development of predictive maintenance has become one of the most important drivers of innovation, not only in the maritime industry. The proliferation of on-board and remote sensing and diagnostic systems is creating many new opportunities to reduce maintenance costs and increase operational stability. By predicting impending system faults and failures, proactive maintenance can be initiated to prevent loss of seaworthiness or operability. The motivation of this study is to optimize predictive maintenance in the maritime industry by determining the minimum useful remaining lead-acid battery capacity measurement frequency required to achieve cost-efficiency and desired prognostic performance in a remaining battery capacity indication system. The research seeks to balance operational stability and cost-effectiveness, providing valuable insight into the practical considerations and potential benefits of predictive maintenance.
Journal Article

Criticality of Prognostics in the Operations of Autonomous Aircraft

2023-06-28
Abstract This article addresses the design, testing, and evaluation of rigorous and verifiable prognostic and health management (PHM) functions applied to autonomous aircraft systems. These PHM functions—many deployed as algorithms—are integrated into a holistic framework for integrity management of aircraft components and systems that are subject to both operational degradation and incipient failure modes. The designer of a comprehensive and verifiable prognostics system is faced with significant challenges. Data (both baseline and faulted) that are correlated, time stamped, and appropriately sampled are not always readily available. Quantifying uncertainty, and its propagation and management, which are inherent in prognosis, can be difficult. High-fidelity modeling of critical components/systems can consume precious resources. Data mining tools for feature extraction and selection are not easy to develop and maintain.
Journal Article

Prediction of Surface Finish on Hardened Bearing Steel Machined by Ceramic Cutting Tool

2023-05-17
Abstract Prediction of the surface finish of hardened bearing steels was estimated in machining with ceramic uncoated cutting tools under various process parameters using two statistical approaches. A second-order (quadratic) regression model (MQR, multiple quantile regression) for the surface finish was developed and then compared with the artificial neural network (ANN) method based on the coefficient determination (R 2), root mean square error (RMSE), and percentage error (PE). The experimental results exhibited that cutting speed was the dominant parameter, but feed rate and depth of cut were insignificant in terms of the Pareto chart and analysis of variance (ANOVA). The optimum surface finish in machining bearing steel was achieved at 100 m/min speed, 0.1 mm/revolution (rev) feed rate, and 0.6 mm depth of cut.
Journal Article

Torque Distribution Control Strategy of Electric Wheel Loader with Multiple Drive Motors Based on Optimal Motor Efficiency

2023-03-15
Abstract Wheel loaders are widely used in construction projects. In order to reduce pollution and energy consumption, major wheel loader manufacturers are developing electric powertrain technology. Our main research goal is to reduce the energy consumption of a pure electric loader. This study is intended to build a vehicle simulation model of a multiple drive motor electric loader. According to the common working conditions and empirical formulas of the loader, the simulation data of the electric loader are calculated. The torque distribution control strategy based on the optimal efficiency of the motor is designed for the multiple drive motor electric loader and is compared with the equal proportion distribution control and the axle load ratio distribution control through simulation analysis. The simulation results show that the proposed torque distribution control strategy based on motor optimal efficiency can reduce energy consumption by 7–12%.
Journal Article

Friction Stir Welding of Aluminum Lithium Alloys: Experimental Investigation of Mechanical Characteristics Using Grey Relational Theory

2022-12-06
Abstract In the current research, an aluminum alloy AA8090 is welded using the friction stir welding (FSW) technique. The main objective is to eliminate the chances of defects in the weld joint, which were observed in the conventional joining process. Experiments were planned according to the one factor at a time (OFAT) approach. The input process parameters involved during the present work are welding speed (WS), rotational speed (RS), tilt angle (TA), and dwell time (DT). However, the response variables investigated at different input parametric combinations are tensile strength (TS), percentage elongation (EL), microhardness (MH), and macroscopic structure. Due to the combination of both attributes of optimization (the higher the better in TS and the lower the better in EL), the multi-performance quality characteristics optimization approach, i.e., grey relational analysis (GRA), is implemented.
X