Refine Your Search

Topic

Search Results

Journal Article

Dimethyl Ether Biogas Reactivity-Controlled Compression Ignition for Sustainable Power Generation with Low Nitrogen Oxide Emissions

2024-04-22
Abstract Biogas (60% methane–40% CO2 approximately) can be used in the reactivity-controlled compression ignition (RCCI) mode along with a high-reactivity fuel (HRF). In this work dimethyl ether (DME) that can also be produced from renewable sources was used as the HRF as a move toward sustainable power generation. The two-cylinder turbocharged diesel engine modified to work in the DME–biogas RCCI (DMB-RCCI) mode was studied under different proportions of methane (45–95%) in biogas since the quality of this fuel can vary depending on the feedstock and production method. Only a narrow range of biogas to DME ratios could be tolerated in this mode at each output without misfire or knock. Detailed experiments were conducted at brake mean effective pressures (BMEPs) of 3 and 5 bar at a speed of 1500 rpm and comparisons were made with the diesel–biogas dual-fuel and diesel–biogas RCCI modes under similar methane flow rates while the proportion of CO2 was varied.
Journal Article

Potential Analysis of Defossilized Operation of a Heavy-Duty Dual-Fuel Engine Utilizing Dimethyl Carbonate/Methyl Formate as Primary and Poly Oxymethylene Dimethyl Ether as Pilot Fuel

2024-04-18
Abstract This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization.
Journal Article

Hydrogen Injection Position Impact: Experimental Analysis of Central Direct Injection and Side Direct Injection in Engines

2024-04-18
Abstract A detailed investigation was carried out on the performance, combustion, and emissions of a single-cylinder direct injection hydrogen spark ignition (SI) engine with either a side-mounted direct injection (SDI) or a centrally installed direct injection (CDI) injector. The first part of the study analyzed the performance and emissions characteristics of CDI and SDI engine operations with different injection timings and pressures. This was followed by comparing the engine’s performance and emissions of the CDI and SDI operations at different engine speeds and relative air-to-fuel ratios (lambda) with the optimized injection pressure and timings. Furthermore, the performance and emission attributes of the hydrogen engine with the CDI and SDI setups were conducted at a fixed λ value of 2.75 across a broad spectrum of engine loads. The study’s main outcome demonstrates that both direct injection systems produced near-zero CO2, CO, and HC emissions.
Journal Article

Comparison of Tabulated and Complex Chemistry Approaches for Ammonia–Diesel Dual-Fuel Combustion Simulation

2024-04-18
Abstract Using ammonia as a carbon-free fuel is a promising way to reduce greenhouse gas emissions in the maritime sector. Due to the challenging fuel properties, like high autoignition temperature, high latent heat of vaporization, and low laminar flame speeds, a dual-fuel combustion process is the most promising way to use ammonia as a fuel in medium-speed engines. Currently, many experimental investigations regarding premixed and diffusive combustion are carried out. A numerical approach has been employed to simulate the complex dual-fuel combustion process to better understand the influences on the diffusive combustion of ammonia ignited by a diesel pilot. The simulation results are validated based on optical investigations conducted in a rapid compression–expansion machine (RCEM). The present work compares a tabulated chemistry simulation approach to complex chemistry-based simulations.
Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Application of a Comprehensive Lagrangian–Eulerian Spark-Ignition Model to Different Operating Conditions

2024-04-08
Abstract Increasing engine efficiency is essential to reducing emissions, which is a priority for automakers. Unconventional modes such as boosted and highly dilute operation have the potential to increase engine efficiency but suffer from stability concerns and cyclic variability. To aid engineers in designing ignition systems that reduce cyclic variability in such engine operation modes, reliable and accurate spark-ignition models are necessary. In this article, a Lagrangian–Eulerian spark-ignition (LESI) model is used to simulate electrical discharge, spark channel elongation, and ignition in inert or reacting crossflow within a combustion vessel, at different pressures, flow speeds, and dilution rates. First the model formulation is briefly revisited. Then, the experimental and simulations setups are presented.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Review of Research on Asymmetric Twin-Scroll Turbocharging for Heavy-Duty Diesel Engines

2024-02-21
Abstract Asymmetric twin-scroll turbocharging technology, as one of the effective technologies for balancing fuel economy and nitrogen oxide emissions, has been widely studied in the past decade. In response to the ever-increasing demands for improved fuel efficiency and reduced exhaust emissions, extensive research efforts have been dedicated to investigating various aspects of this technology. Researchers have conducted both experimental and simulation studies to delve into the intricate flow mechanism of asymmetric twin-scroll turbines. Furthermore, considerable attention has been given to exploring the optimal matching between asymmetric twin-scroll turbines and engines, as well as devising innovative flow control methods for these turbines. Additionally, researchers have sought to comprehend the impact of exhaust pulse flow on the performance of asymmetric twin-scroll turbines.
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Modal Analysis of Combustion Chamber Acoustic Resonance to Reduce High-Frequency Combustion Noise in Pre-Chamber Jet Ignition Combustion Engines

2024-01-31
Abstract The notable increase in combustion noise in the 7–10 kHz band has become an issue in the development of pre-chamber jet ignition combustion gasoline engines that aim for enhanced thermal efficiency. Combustion noise in such a high-frequency band is often an issue in diesel engine development and is known to be due to resonance in the combustion chamber. However, there are few cases of it becoming a serious issue in gasoline engines, and effective countermeasures have not been established. The authors therefore decided to elucidate the mechanism of high-frequency combustion noise generation specific to this engine, and to investigate effective countermeasures. As the first step, in order to analyze the combustion chamber resonance modes of this engine in detail, calculation analysis using a finite element model and experimental modal analysis using an acoustic excitation speaker were conducted.
Journal Article

Development of a Turbulent Jet-Controlled Compression Ignition Engine Concept Using Spray-Guided Stratification for Fueling a Passive Prechamber

2024-01-24
Abstract Improving thermal efficiency of an internal combustion engine is one of the most cost-effective ways to reduce life cycle-based CO2 emissions for transportation. Lean burn technology has the potential to reach high thermal efficiency if simultaneous low NOx, HC, and CO emissions can be achieved. Low NOx can be realized by ultra-lean (λ ≥ 2) spark-ignited combustion; however, the HC and CO emissions can increase due to slow flame propagation and high combustion variability. In this work, we introduce a new combustion concept called turbulent jet-controlled compression ignition, which utilizes multiple turbulent jets to ignite the mixture and subsequently triggers end gas autoignition. As a result, the ultra-lean combustion is further improved with reduced late-cycle combustion duration and enhanced HC and CO oxidation. A low-cost passive prechamber is innovatively fueled using a DI injector in the main combustion chamber through spray-guided stratification.
Journal Article

Machine Learning-Based Modeling and Predictive Control of Combustion Phasing and Load in a Dual-Fuel Low-Temperature Combustion Engine

2024-01-18
Abstract Reactivity-controlled compression ignition (RCCI) engine is an innovative dual-fuel strategy, which uses two fuels with different reactivity and physical properties to achieve low-temperature combustion, resulting in reduced emissions of oxides of nitrogen (NOx), particulate matter, and improved fuel efficiency at part-load engine operating conditions compared to conventional diesel engines. However, RCCI operation at high loads poses challenges due to the premixed nature of RCCI combustion. Furthermore, precise controls of indicated mean effective pressure (IMEP) and CA50 combustion phasing (crank angle corresponding to 50% of cumulative heat release) are crucial for drivability, fuel conversion efficiency, and combustion stability of an RCCI engine.
Journal Article

Machine Learning Tabulation Scheme for Fast Chemical Kinetics Computation

2023-12-28
Abstract This study proposes a machine learning tabulation (MLT) method that employs deep neural networks (DNNs) to predict ignition delay and knock propensity in spark ignition (SI) engines. The commonly used Arrhenius model and Livengood–Wu integral for fast knock prediction are not accurate enough to account for residual gas species and may require adjustments or modifications to account for specific engine characteristics. Detailed kinetics modeling is computationally expensive, so the MLT approach is introduced to solve these issues. The MLT method uses precalculated thermochemical states of the mixture that are clustered based on a combustion progress variable. Hundreds of DNNs are trained with the stochastic Levenberg–Marquardt (SLM) optimization algorithm, reducing training time and memory requirements for large-scale problems. MLT has high interpolation accuracy, eliminates the need for table storage, and reduces memory requirements by three orders of magnitude.
Journal Article

Influence of Passive Pre-Chamber Nozzle Diameter on Jet Ignition in a Constant-Volume Optical Engine under Varying Load and Dilution Conditions

2023-12-20
Abstract Despite the growing prominence of electrified vehicles, internal combustion engines remain essential in future transportation. This study delves into passive pre-chamber jet ignition, a leading-edge combustion technology, offering a comprehensive visualization of its operation under varying load and dilution conditions in light-duty GDI engines. Our primary objectives are to gain fundamental insights into passive pre-chamber jet ignition and subsequent main combustion processes and evaluate their response to different load and dilution conditions. We conducted experimental investigations using a light-duty, optical, single-cylinder engine equipped with three passive pre-chamber designs featuring varying nozzle diameters. Optical diagnostic imaging and heat release analysis provided critical insights.
Journal Article

A Review of Cavitation Phenomenon and Its Influence on the Spray Atomization in Diesel Injector Nozzles

2023-12-15
Abstract In view of the combustion efficiency and emission performance, various new clean combustion modes put forward higher requirements for the performance of the fuel injection system, and the cavitating two-phase flow characteristics in the injector nozzle have a significant impact on the spray atomization and combustion performance. This article comprehensively discusses and summarizes the factors that affect cavitation and the effectiveness of cavitation, and presents the research status and existent problems under each factor. Among them, viscosity factors are a hot research topic that researchers are passionate about, and physical properties factors still have the value of further in-depth research. However, the importance of material surface factors ranks last since the nozzle material was determined. Establishing a more comprehensive cavitation–atomization model considering various factors is the focus of research on cavitation phenomena.
Journal Article

Review of Gas Generation Behavior during Thermal Runaway of Lithium-Ion Batteries

2023-12-04
Abstract Due to the limitations of current battery manufacturing processes, integration technology, and operating conditions, the large-scale application of lithium-ion batteries in the fields of energy storage and electric vehicles has led to an increasing number of fire accidents. When a lithium-ion battery undergoes thermal runaway, it undergoes complex and violent reactions, which can lead to combustion and explosion, accompanied by the production of a large amount of flammable and toxic gases. These flammable gases continue to undergo chemical reactions at high temperatures, producing complex secondary combustion products. This article systematically summarizes the gas generation characteristics of different types and states of batteries under different thermal runaway triggering conditions. And based on this, proposes the key research directions for the gas generation characteristics of lithium-ion batteries.
Journal Article

Combustion Optimization of a Premixed Ultra-Lean Blend of Natural Gas and Hydrogen in a Dual Fuel Engine Running at Low Load

2023-12-01
Abstract The numerical study presented in this article is based on an automotive diesel engine (2.8 L, 4-cylinder, turbocharged), considering a NG–H2 blend with 30 vol% of H2, ignited by multiple diesel fuel injections. The 3D-CFD investigation aims at improving BTE, CO, and UHC emissions at low load, by means of an optimization of the diesel fuel injection strategy and of the in-cylinder turbulence (swirl ratio, SR). The operating condition is 3000 rpm – BMEP = 2 bar, corresponding to about 25% of the maximum load of a gen-set engine, able to deliver up to 83 kW at 3000 rpm (rated speed). The reference diesel fuel injection strategy, adopted in all the previous numerical and experimental studies, is a three-shot mode. The numerical optimization carried out in this study consisted in finding the optimal number of injections per cycle, as well as the best timing of each injection and the fuel mass split among the injections.
Journal Article

Methanol (M85) Port Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 1: Combustion Optimization for Efficiency Improvement and Emission Reduction

2023-10-27
Abstract Limited fossil fuel resources and carbonaceous greenhouse gas emissions are two major problems the world faces today. Alternative fuels can effectively power internal combustion engines to address these issues. Methanol can be an alternative to conventional fuels, particularly to displace gasoline in spark ignition engines. The physicochemical properties of methanol are significantly different than baseline gasoline and fuel mixture-aim lambda; hence methanol-fueled engines require modifications in the fuel injection parameters. This study optimized the fuel injection quantity, spark timing, and air–fuel ratio for M85 (85% v/v methanol + 15% v/v gasoline) fueling of a port fuel-injected single-cylinder 500 cc motorcycle test engine. Comparative engine performance, combustion, and emissions analyses were performed for M85 and baseline gasoline.
X