Refine Your Search

Topic

Search Results

Journal Article

Experimental Analysis of Kerf Characteristics of Carbon Fiber-Reinforced Polymer with Abrasive Water Jet Machining

2024-05-01
Abstract This research looks into how abrasive water jet machining (AWJM) can be used on carbon fiber-reinforced polymer (CFRP) materials, specifically how the kerf characteristics change with respect to change in process parameters. We carefully looked into four important process parameters: stand-off distance (SOD), water pressure (WP), traverse rate (TR), and abrasive mass flow rate (AMFR). The results showed that as SOD goes up, the kerf taper angle goes up because of jet dispersion, but as WP goes up, the angle goes down because jet kinetic energy goes up. The TR was directly related to the kerf taper angle, but it made the process less stable. The kerf drop angle was not greatly changed by AMFR. When it came to kerf top width, SOD made it wider, WP made it narrower, TR made it narrower, and AMFR made it a little wider. When the settings (SOD: 1 mm, WP: 210 MPa, TR: 150 mm/min, AMFR: 200 g/min) were optimized, the kerf taper angle and kerf top width were lowered.
Journal Article

Determination of Air–Fuel Ratio at 1 kHz via Mid-Infrared Laser Absorption and Fast Flame Ionization Detector Measurements in Engine-Out Vehicle Exhaust

2024-04-29
Abstract Measurements of air–fuel ratio (AFR) and λ (AFRactual/AFRstoich) are crucial for understanding internal combustion engine (ICE) performance. However, current λ sensors suffer from long light-off times (on the order of seconds following a cold start) and limited time resolution. In this study, a four-color mid-infrared laser absorption spectroscopy (LAS) sensor was developed to provide 5 kHz measurements of temperature, CO, CO2, and NO in engine-out exhaust. This LAS sensor was then combined with 1 kHz hydrocarbon (HC) measurements from a flame ionization detector (FID), and the Spindt exhaust gas analysis method to provide 1 kHz measurements of λ. To the authors’ knowledge, this is the first time-resolved measurement of λ during engine cold starts using the full Spindt method. Three tests with various engine AFR calibrations were conducted and analyzed: (1) 10% lean, (2) stoichiometric, and (3) 10% rich.
Journal Article

A Virtual Calibration Strategy and Its Validation for Large-Scale Models of Multi-Sheet Self-Piercing Rivet Connections

2024-04-29
Abstract This article presents a strategy for the virtual calibration of a large-scale model representing a self-piercing rivet (SPR) connection. The connection is formed between a stack of three AA6016-T4 aluminum sheets and one SPR. The calibration process involves material characterization, a detailed riveting process simulation, virtual joint unit tests, and the final large-scale model calibration. The virtual tests were simulated by detailed solid element FE models of the joint unit. These detailed models were validated using experimental tests, namely peeling, single-lap joint, and cross-tests. The virtual parameter calibration was compared to the experimental calibration and finally applied to component test simulations. The article contains both experiments and numerical models to characterize the mechanical behavior of the SPR connection under large deformation and failure.
Journal Article

Se (IV)-Doped Monodisperse Spherical TiO2 Nanoparticles for Adhesively Bonded Joint Reinforcing: Synthesis and Characterization

2024-04-27
Abstract This study focused on the synthesis and characterization of monodisperse spherical TiO2 nanoparticles doped on the surface with Se (IV) in order to increase the mechanical properties of the bonded joint reinforcing. Work will begin with the synthesis of monodisperse quasi-spherical TiO2 nanoparticles with a modal diameter of less than 20 nm, using the sol-gel technique. Se (IV) selenium surface doping changed the specimen’s chemistry and physics. Different initial concentrations of the doping element will be tested. Next, a physicochemical characterization of the different solid systems will be carried out in order to determine the effect of the doping element on the properties of titanium dioxide. Their morphology and size will be studied through transmission electron microscope observations; volume chemical composition by X-ray diffraction analysis, EDX (energy-dispersive X-ray), and XRF (X-ray fluorescence).
Journal Article

Failure Analysis of Cryogenically Treated and Gas Nitrided Die Steel in Rotating Bending Fatigue

2024-04-24
Abstract AISI H13 hot work tool steel is commonly used for applications such as hot forging and hot extrusion in mechanical working operations that face thermal and mechanical stress fluctuations, leading to premature failures. Cryogenic treatment was applied for AISI H13 steel to improve the surface hardness and thereby fatigue resistance. This work involves failure analysis of H13 steel specimens subjected to cryogenic treatment and gas nitriding. The specimens were heated to 1020°C, oil quenched followed by double tempering at 550°C for 2 h, and subsequently, deep cryogenically treated at −185°C in the cryochamber. Gas nitriding was carried out for 24 h at 500°C for 200 μm case depth in NH3 surroundings. The specimens were subjected to rotating bending fatigue at constant amplitude loading at room temperature.
Journal Article

A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper

2024-04-18
Abstract Automotive subframe is a critical chassis component as it connects with the suspension, drive units, and vehicle body. All the vibration from the uneven road profile and drive units are passed through the subframe to the vehicle body. OEMs usually have specific component-level drive point dynamic stiffness (DPDS) requirements for subframe suppliers to achieve their full vehicle NVH goals. Traditionally, the DPDS improvement for subframes welded with multiple stamping pieces is done by thickness and shape optimization. The thickness optimization usually ends up with a huge mass penalty since the stamping panel thickness has to be changed uniformly not locally. Structure shape and section changes normally only work for small improvements due to the layout limitations. Tuned rubber mass damper (TRMD) has been widely used in the automotive industry to improve the vehicle NVH performance thanks to the minimum mass it adds to the original structure.
Journal Article

Research on Network Security Situation Prediction Algorithm Combining Intuitionistic Fuzzy Sets and Deep Neural Networks

2024-04-17
Abstract The expansion of the internet has made everyone’s personal and professional lives more transparent. There are network security issues because people like sharing resources under the right conditions. Academics have demonstrated significant interest in situation awareness, which includes situation prediction, situation appraisal, and event detection, rather than focusing on the security of a single device in the network. Multi-stage attack forecasting and security situation awareness are two significant issues for network supervisors because the future usually is unknown. Hence, this study suggests combined intuitionistic fuzzy sets and deep neural network (CIFS-DNN) for network security situation prediction. The goal is to provide network administrators with a resource they can use as a point of reference while they formulate and carry out preventive actions in the event of a network assault.
Journal Article

Optimization and Performance Evaluation of Additives-Enhanced Fluid in Machining Using Split-Plot Design

2024-04-15
Abstract In recent years, the use of cutting fluids has become crucial in hard metal machining. Traditional non-biodegradable cutting fluids have long dominated various industries for machining. This research presents an innovative approach by suggesting a sustainable alternative: a cutting fluid made from a blend of glycerol (GOL) and distilled water (DW). We conducted a thorough investigation, creating 11 different GOL and DW mixtures in 10% weight increments. These mixtures were rigorously tested through 176 experiments with varying loads and rotational speeds. Using Design-Expert software (DES), we identified the optimal composition to be 70% GOL and 30% DW, with the lowest coefficient of friction (CFN). Building on this promising fluid, we explored further improvements by adding three nanoscale additives: Nano-graphite (GHT), zinc oxide (ZnO), and reduced graphene oxide (RGRO) at different weight percentages (0.06%, 0.08%, 0.1%, and 0.3%).
Journal Article

Spectroscopy-Based Machine Learning Approach to Predict Engine Fuel Properties of Biodiesel

2024-04-11
Abstract Various feedstocks can be employed for biodiesel production, leading to considerable variation in composition and engine fuel characteristics. Using biodiesels originating from diverse feedstocks introduces notable variations in engine characteristics. Therefore, it is imperative to scrutinize the composition and properties of biodiesel before deployment in engines, a task facilitated by predictive models. Additionally, the international commercialization of biodiesel fuel is contingent upon stringent regulations. The traditional experimental measurement of biodiesel properties is laborious and expensive, necessitating skilled personnel. Predictive models offer an alternative approach by estimating biodiesel properties without depending on experimental measurements. This research is centered on building models that correlate mid-infrared spectra of biodiesel and critical fuel properties, encompassing kinematic viscosity, cetane number, and calorific value.
Journal Article

Bayesian Network Model and Causal Analysis of Ship Collisions in Zhejiang Coastal Waters

2024-04-10
Abstract For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions.
Journal Article

Microstructural and Corrosion Behavior of Thin Sheet of Stainless Steel-Grade Super Duplex 2507 by Gas Tungsten Arc Welding

2024-03-21
Abstract Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Experimental Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2024-03-01
Abstract The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT.
Journal Article

Vehicle Braking Performance Improvement via Electronic Brake Booster

2024-02-10
Abstract Throughout the automobile industry, the electronic brake boost technologies have been widely applied to support the expansion of the using range of the driver assist technologies. The electronic brake booster (EBB) supports to precisely operate the brakes as necessary via building up the brake pressure faster than the vacuum brake booster. Therefore, in this article a novel control strategy for the EBB based on fuzzy logic control (FLC) is developed and studied. The configuration of the EBB is established and the system model including the permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, reaction disk, and the hydraulic load are modeled by MATLAB/Simulink. The load-dependent friction has been compensated by using Karnopp friction model. Due to the strong nonlinearity on the EBB components and the load-dependent friction, FLC has been used for the control algorithm.
Journal Article

Time Domain Analysis of Ride Comfort and Energy Dissipation Characteristics of Automotive Vibration Proportional–Integral–Derivative Control

2024-02-05
Abstract A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations.
Journal Article

A Novel Approach to Light Detection and Ranging Sensor Placement for Autonomous Driving Vehicles Using Deep Deterministic Policy Gradient Algorithm

2024-01-31
Abstract This article presents a novel approach to optimize the placement of light detection and ranging (LiDAR) sensors in autonomous driving vehicles using machine learning. As autonomous driving technology advances, LiDAR sensors play a crucial role in providing accurate collision data for environmental perception. The proposed method employs the deep deterministic policy gradient (DDPG) algorithm, which takes the vehicle’s surface geometry as input and generates optimized 3D sensor positions with predicted high visibility. Through extensive experiments on various vehicle shapes and a rectangular cuboid, the effectiveness and adaptability of the proposed method are demonstrated. Importantly, the trained network can efficiently evaluate new vehicle shapes without the need for re-optimization, representing a significant improvement over classical methods such as genetic algorithms.
Journal Article

Modal Analysis of Combustion Chamber Acoustic Resonance to Reduce High-Frequency Combustion Noise in Pre-Chamber Jet Ignition Combustion Engines

2024-01-31
Abstract The notable increase in combustion noise in the 7–10 kHz band has become an issue in the development of pre-chamber jet ignition combustion gasoline engines that aim for enhanced thermal efficiency. Combustion noise in such a high-frequency band is often an issue in diesel engine development and is known to be due to resonance in the combustion chamber. However, there are few cases of it becoming a serious issue in gasoline engines, and effective countermeasures have not been established. The authors therefore decided to elucidate the mechanism of high-frequency combustion noise generation specific to this engine, and to investigate effective countermeasures. As the first step, in order to analyze the combustion chamber resonance modes of this engine in detail, calculation analysis using a finite element model and experimental modal analysis using an acoustic excitation speaker were conducted.
Journal Article

Design, Analysis, and Optimization of Off-Highway Rear Dump Truck Chassis Frame Rail Profile Using Design Exploration and Finite Element Analysis Technique

2024-01-31
Abstract During mining material hauling, the chassis frame structure of rear dump trucks is subjected to fatigue loading due to uneven road conditions. This loading often leads to crack propagation in the frame rails, necessitating the determination of stresses in the critical zone during the design stage to ensure structural integrity. In this study, a computer-aided engineering (CAE) methodology is employed to size and select the rectangular profile cross section of the chassis frame rail. A detailed design investigation of the chassis frame is conducted to assess its load resistance, structural flexibility, and weld joint fatigue life under critical stresses arising from combined bending and torsion loads. The optimization process aims to determine the optimal rail size and material thickness, striking a balance between minimizing mass and maximizing structural reliability.
Journal Article

Multi-objective Optimization of Injection Molding Process Based on One-Dimensional Convolutional Neural Network and the Non-dominated Sorting Genetic Algorithm II

2024-01-29
Abstract In the process of injection molding, the vacuum pump rear housing is prone to warping deformation and volume shrinkage, which affects its sealing performance. The main reason is the improper control of the injection process and the large flat structure of the vacuum pump rear housing, which does not meet its production and assembly requirements (the warpage deformation should be controlled within 1.1 mm and the volume shrinkage within 10%). To address this issue, this study initially utilized orthogonal experiments to obtain training samples and conducted a preliminary analysis using gray relational analysis. Subsequently, a predictive model was established based on a one-dimensional convolutional neural network (1D CNN).
Journal Article

Aircraft Cockpit Window Improvements Enabled by High-Strength Tempered Glass

2024-01-25
Abstract This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load.
X