Refine Your Search

Topic

Search Results

Journal Article

Comparison of Tabulated and Complex Chemistry Approaches for Ammonia–Diesel Dual-Fuel Combustion Simulation

2024-04-18
Abstract Using ammonia as a carbon-free fuel is a promising way to reduce greenhouse gas emissions in the maritime sector. Due to the challenging fuel properties, like high autoignition temperature, high latent heat of vaporization, and low laminar flame speeds, a dual-fuel combustion process is the most promising way to use ammonia as a fuel in medium-speed engines. Currently, many experimental investigations regarding premixed and diffusive combustion are carried out. A numerical approach has been employed to simulate the complex dual-fuel combustion process to better understand the influences on the diffusive combustion of ammonia ignited by a diesel pilot. The simulation results are validated based on optical investigations conducted in a rapid compression–expansion machine (RCEM). The present work compares a tabulated chemistry simulation approach to complex chemistry-based simulations.
Journal Article

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology

2024-03-29
Abstract This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day.
Journal Article

A Diesel Engine Ring Pack Performance Assessment

2024-03-23
Abstract Demonstrating ring pack operation in an operating engine is very difficult, yet it is essential to optimize engine performance parameters such as blow-by, oil consumption, emissions, and wear. A significant amount of power is lost in friction between piston ring–cylinder liner interfaces if ring pack parameters are not optimized properly. Thus, along with these parameters, it is also necessary to reduce friction power loss in modern internal combustion engines as the oil film thickness formed between the piston ring and liner is vital for power loss reduction due to friction. Hence, it has also been a topic of research interest for decades. Piston and ring dynamics simulation software are used extensively for a better ring pack design. In this research work, a similar software for piston ring dynamics simulation reviews the ring pack performance of a four-cylinder diesel engine.
Journal Article

Vehicle Braking Performance Improvement via Electronic Brake Booster

2024-02-10
Abstract Throughout the automobile industry, the electronic brake boost technologies have been widely applied to support the expansion of the using range of the driver assist technologies. The electronic brake booster (EBB) supports to precisely operate the brakes as necessary via building up the brake pressure faster than the vacuum brake booster. Therefore, in this article a novel control strategy for the EBB based on fuzzy logic control (FLC) is developed and studied. The configuration of the EBB is established and the system model including the permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, reaction disk, and the hydraulic load are modeled by MATLAB/Simulink. The load-dependent friction has been compensated by using Karnopp friction model. Due to the strong nonlinearity on the EBB components and the load-dependent friction, FLC has been used for the control algorithm.
Journal Article

AI-Based Virtual Sensing of Gaseous Pollutant Emissions at the Tailpipe of a High-Performance Vehicle

2024-01-09
Abstract This scientific publication presents the application of artificial intelligence (AI) techniques as a virtual sensor for tailpipe emissions of CO, NOx, and HC in a high-performance vehicle. The study aims to address critical challenges faced in real industrial applications, including signal alignment and signal dynamics management. A comprehensive pre-processing pipeline is proposed to tackle these issues, and a light gradient-boosting machine (LightGBM) model is employed to estimate emissions during real driving cycles. The research compares two modeling approaches: one involving a unique “direct model” and another using a “two-stage model” which leverages distinct models for the engine and the aftertreatment. The findings suggest that the direct model strikes the best balance between simplicity and accuracy.
Journal Article

Improvement of Traction Force Estimation in Cornering through Neural Network

2024-01-04
Abstract Accurate estimation of traction force is essential for the development of advanced control systems, particularly in the domain of autonomous driving. This study presents an innovative approach to enhance the estimation of tire–road interaction forces under combined slip conditions, employing a combination of empirical models and neural networks. Initially, the well-known Pacejka formula, or magic formula, was adopted to estimate tire–road interaction forces under pure longitudinal slip conditions. However, it was observed that this formula yielded unsatisfactory results under non-pure slip conditions, such as during curves. To address this challenge, a neural network architecture was developed to predict the estimation error associated with the Pacejka formula. Two distinct neural networks were developed. The first neural network employed, as inputs, both longitudinal slip ratios of the driving wheels and the slip angles of the driving wheels.
Journal Article

Multibody Dynamics Modeling of a Continuous Rubber Track System: Part 2—Experimental Evaluation of Load Prediction

2023-12-07
Abstract Vehicles equipped with rubber track systems feature a high level of performance but are challenging to design due to the complex components involved and the large number of degrees of freedom, thus raising the need to develop validated numerical simulation tools. In this article, a multibody dynamics (MBD) model of a continuous rubber track system developed in Part 1 is compared with extensive experimental data to evaluate the model accuracy over a wide range of operating conditions (tractor speed and rear axle load). The experiment consists of crossing an instrumented bump-shaped obstacle with a tractor equipped with a pair of rubber track systems on the rear axle. Experimental responses are synchronized with simulation results using a cross-correlation approach. The vertical and longitudinal maximum forces predicted by the model, respectively, show average relative errors of 34% and 39% compared to experimental data (1–16 km/h).
Journal Article

Nonreciprocal Elasticity and Nonuniform Thickness of Curved Spokes on the Top-Loading Ratio, Vertical Stiffness, and Local Stress of Nonpneumatic Wheels

2023-12-05
Abstract The nonreciprocal elastic behavior of flexible spokes is essential for designing a top-loading condition of nonpneumatic wheels to distribute the vehicle load throughout the upper circumferential region of a wheel to replicate the loading mode of their pneumatic counterparts. However, most ad hoc spoke designs had been conducted without considering the top-loading mechanics. Moreover, minimizing the stress concentration on the spokes is also significant for preventing potential failures; however, modification of the geometry to reduce the local stress on the spokes has not yet been studied. In this work, we investigate the effect of nonreciprocal elastic behaviors of curved spokes on the top-loading distribution of nonpneumatic wheels. We also study the geometric effect of nonuniform curved spokes on reducing the local stress concentration. Curved beam spokes with greater curvature can contribute to a high top-loading ratio of nonpneumatic wheels.
Journal Article

Stochastic Noise Sources for Computational Aeroacoustics of a Vehicle Side Mirror

2023-11-09
Abstract The broadband aeroacoustics of a side mirror is investigated with a stochastic noise source method and compared to scale-resolving simulations. The setup based on an already existing work includes two geometrical variants with a plain series side mirror and a modified mirror with a forward-facing step mounted on the inner side. The aeroacoustic near- and farfield is computed by a hydrodynamic–acoustic splitting approach by means of a perturbed convective wave equation. Aeroacoustic source terms are computed by the Fast Random Particle-Mesh method, a stochastic noise source method modeling velocity fluctuations in time domain based on time-averaged turbulence statistics. Three RANS models are used to provide input data for the Fast Random Particle-Mesh method with fundamental differences in local flow phenomena.
Journal Article

Contribution to the Objective Evaluation of Combined Longitudinal and Lateral Vehicle Dynamics in Nonlinear Driving Range

2023-10-19
Abstract Since the complexity of modern vehicles is increasing continuously, car manufacturers are forced to improve the efficiency of their development process to remain profitable. A frequently mentioned measure is the consequent integration of virtual methods. In this regard, objective evaluation criteria are essential for the virtual design of driving dynamics. Therefore, this article aims to identify robust objective evaluation criteria for the nonlinear combined longitudinal and lateral dynamics of a vehicle. The article focuses on the acceleration in a turn maneuver since available objective criteria do not consider all relevant characteristics of vehicle dynamics. For the identification of the objective criteria, a generic method is developed and applied. First, an open-loop test procedure and a set of potential robust objective criteria are defined.
Journal Article

Numerical Simulation of Turbulent Structures Inside Internal Combustion Engines Using Large Eddy Simulation Method

2023-10-16
Abstract Using two subgrid-scale models of Smagorinsky and its dynamic version, large eddy simulation (LES) approach is applied to develop a 3D computer code simulating the in-cylinder flow during intake and compression strokes in an engine geometry consisting of a pancake-shaped piston with a fixed valve. The results are compared with corresponding experimental data and a standard K-Ɛ turbulence model. LES results generally show better agreement with available experimental data suggesting that LES with dynamic subgrid-scale model is more effective method for accurately predicting the in-cylinder flow field.
Journal Article

Numerical Analysis and Modelling of the Effectiveness of Micro Wind Turbines Installed in an Electric Vehicle as a Range Extender

2023-10-10
Abstract In recent years, the number of electric vehicles (EVs) has grown rapidly, as well as public interest in them. However, the lack of sufficient range is one of the most common complaints about these vehicles, which is particularly problematic for people with long daily commutes. Thus, this article proposed a solution to this problem by installing micro wind turbines (MWTs) on EVs as a range extender. The turbines will generate electricity by converting the kinetic energy of the air flowing through the MWT into mechanical energy, which can have a reasonable effect on the vehicle aerodynamics. The article uses mathematical modelling and numerical analysis. Regarding the modelling, a detailed EV model in MATLAB/SIMULINK was developed to analyze the EV performance using various driving cycles in real time.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

Recurrent Neural Network Model for On-Board Estimation of the Side-Slip Angle in a Four-Wheel Drive and Steering Vehicle

2023-09-23
Abstract A valuable quantity for analyzing the lateral dynamics of road vehicles is the side-slip angle, that is, the angle between the vehicle’s longitudinal axis and its speed direction. A reliable real-time side-slip angle value enables several features, such as stability controls, identification of understeer and oversteer conditions, estimation of lateral forces during cornering, or tire grip and wear estimation. Since the direct measurement of this variable can only be done with complex and expensive devices, it is worth trying to estimate it through virtual sensors based on mathematical models. This article illustrates a methodology for real-time on-board estimation of the side-slip angle through a machine learning model (SSE—side-slip estimator). It exploits a recurrent neural network trained and tested via on-road experimental data acquisition. In particular, the machine learning model only uses input signals from a standard road car sensor configuration.
Journal Article

Effect of Torso Boundary Conditions on Spine Kinematic and Injury Responses in Head-First Impact Assessed with a 50th Percentile Male Human Body Model

2023-09-20
Abstract Computational and experimental studies have been undertaken to investigate injurious head-first impacts (HFI), which can occur during automotive rollovers. Recent studies assume a torso surrogate mass (TSM) boundary condition, wherein the first or first two thoracic vertebrae are potted and constrained to only move in the vertical loading direction. The TSM boundary condition has not been compared with a full body (FB) model computationally or experimentally for HFI. In this study, the Global Human Body Models Consortium 50th percentile male detailed human body model (M50-O, Version 6.0) was applied to compare the kinematic, kinetic, and injury response of an HFI with a TSM boundary condition (M50-TSM), and a full body boundary condition (M50-FB). Impacts (to M50-TSM and M50-FB) were simulated between the head and a rigid plate using a commercial FE code (LS-DYNA).
Journal Article

The Impact of Seat Belt Pretensioner Deployment on Forward-Leaning Occupants

2023-09-20
Abstract Pyrotechnic seat belt pretensioners typically remove 8–15 cm of belt slack and help couple an occupant to the seat. Our study investigated pretensioner deployment on forward-leaning, live volunteers. The forward-leaning position was chosen because research indicates that passengers frequently depart from a standard sitting position. Characteristics of the 3D kinematics of forward-leaning volunteers following pretensioner deployment determines if body size is correlated with subject response. Nine adult subjects (three female), ages 18–43 years old, across a wide range of body sizes (50–120 kg) were tested. The age was limited to young, active adults as pyrotechnic pretensioners can deliver a notable force to the trunk. Subjects assumed a forward-leaning position, with 26 cm between C7 and the headrest, in a laboratory setting that replicated the passenger seat of a vehicle.
Journal Article

Criticality Metrics Study for Safety Evaluation of Merge Driving Scenarios, Using Near-Miss Video Data

2023-09-15
Abstract In autonomous driving vehicles with an automation level greater than three, the autonomous system is responsible for safe driving, instead of the human driver. Hence, the driving safety of autonomous driving vehicles must be ensured before they are used on the road. Because it is not realistic to evaluate all test conditions in real traffic, computer simulation methods can be used. Since driving safety performance can be evaluated by simulating different driving scenarios and calculating the criticality metrics that represent dangerous collision risks, it is necessary to study and define the criticality metrics for the type of driving scenarios. This study focused on the risk of collisions in the confluence area because it was known that the accident rate in the confluence area is much higher than on the main roadway.
Journal Article

Simulation-Based Testing and Performance Evaluation of Vehicle Safety Functions

2023-09-07
Abstract The progressive development toward highly automated driving poses major challenges for the release and validation process in the automotive industry, because the immense number of test kilometers that have to be covered with the vehicle cannot be tackled to any extent with established test methods, which are highly focused on the real vehicle. For this reason, new methodologies are required. Simulation-based testing and, in particular, virtual driving tests will play an important role in this context. A basic prerequisite for achieving a significant reduction in the test effort with the real vehicle through these simulations are realistic test scenarios. For this reason, this article presents a novel approach for generating relevant traffic situations based on a traffic flow simulation in SUMO and a vehicle dynamics simulation in CarMaker. The procedure is shown schematically for an emergency braking function.
Journal Article

Three-Dimensional In-Depth Dynamic Analysis of a Ground Vehicle Experiencing a Tire Blowout

2023-08-31
Abstract To investigate the effect of a tire blowout (TBO) on the dynamics of the vehicle comprehensively, a three-dimensional full-vehicle multibody mathematical model is developed and integrated with the nonlinear Dugoff’s tire model. In order to ensure the validity of the developed model, a series of standard maneuvers is carried out and the resulting response is verified using the high-fidelity MSC Adams package. Consequently, the in-plane, as well as out-of-plane dynamics of the vehicle, is extensively examined through a sequence of TBO scenarios with various blown tires and during both rectilinear and curvilinear motion. Moreover, the different possible inputs from the driver, the road bank angle, and the antiroll bar have been accounted for. The results show that the dynamic behavior of the vehicle is tremendously affected both in-plane and out-of-plane and its directional stability is degraded.
Journal Article

A Review of Dynamic State Estimation for the Neighborhood System of Connected Vehicles

2023-07-28
Abstract Precise vehicle state and the surrounding traffic information are essential for decision-making and dynamic control of intelligent connected vehicles. Tremendous research efforts have been devoted to developing state estimation techniques. This work investigates the research progress in this field over recent years. To be able to describe the state of multiple traffic elements uniformly, the concept of a vehicle neighborhood system is proposed to describe the system composed of vehicles and their surrounding traffic elements and to distinguish it from the traditional macroscopic traffic research field. In this work, the vehicle neighborhood system consists of three main traffic elements: the host vehicle, the preceding vehicle, and the road. Therefore, a review of state estimation methods for the vehicle neighborhood system is presented around the three traffic objects mentioned earlier.
X