Refine Your Search

Topic

Search Results

Journal Article

Experimental Analysis of Heat Transfer Post Quenching of Medium Carbon Steel

2024-05-08
Abstract Transient temperature analysis is involved in the thermal simulation of the heat treatment process, in which the hot metal temperature changes with respect to time from an initial state to the final state. The critical part of the simulation is to determine the heat transfer coefficient (HTC) between the hot part and the quenching medium or quenchant. In liquid quenching, the heat transfer between the hot metal part and water becomes complicated and it is difficult to determine HTC. In the current experimentation a medium carbon steel EN 9 rod with a diameter of 50 mm and length 100 mm was quenched in water and ethylene glycol mixture with different concentrations. A part model was created; meshed and actual boundary conditions were applied to conduct computational fluid dynamics (CFD) analysis. In order to validate CFD analysis the experimental trials were conducted.
Journal Article

Effects of Hard-to-Measure Material Parameters on Clinching Joint Geometries Using Combined Finite Element Method and Machine Learning

2024-05-06
Abstract In this article, we investigated the effects of material parameters on the clinching joint geometry using finite element model (FEM) simulation and machine learning-based metamodels. The FEM described in this study was first developed to reproduce the shape of clinching joints between two AA5052 aluminum alloy sheets. Neural network metamodels were then used to investigate the relation between material parameters and joint geometry as predicted by FEM. By interpreting the data-driven metamodels using explainable machine learning techniques, the effects of the hard-to-measure material parameters during the clinching are studied. It is demonstrated that the friction between the two metal sheets and the flow stress of the material at high (up to 100%) plastic strain are the most influential factors on the interlock and the neck thickness of the clinching joints. However, their dependence on the material parameters is found to be opposite.
Journal Article

Experimental Analysis of Kerf Characteristics of Carbon Fiber-Reinforced Polymer with Abrasive Water Jet Machining

2024-05-01
Abstract This research looks into how abrasive water jet machining (AWJM) can be used on carbon fiber-reinforced polymer (CFRP) materials, specifically how the kerf characteristics change with respect to change in process parameters. We carefully looked into four important process parameters: stand-off distance (SOD), water pressure (WP), traverse rate (TR), and abrasive mass flow rate (AMFR). The results showed that as SOD goes up, the kerf taper angle goes up because of jet dispersion, but as WP goes up, the angle goes down because jet kinetic energy goes up. The TR was directly related to the kerf taper angle, but it made the process less stable. The kerf drop angle was not greatly changed by AMFR. When it came to kerf top width, SOD made it wider, WP made it narrower, TR made it narrower, and AMFR made it a little wider. When the settings (SOD: 1 mm, WP: 210 MPa, TR: 150 mm/min, AMFR: 200 g/min) were optimized, the kerf taper angle and kerf top width were lowered.
Journal Article

Determination of Air–Fuel Ratio at 1 kHz via Mid-Infrared Laser Absorption and Fast Flame Ionization Detector Measurements in Engine-Out Vehicle Exhaust

2024-04-29
Abstract Measurements of air–fuel ratio (AFR) and λ (AFRactual/AFRstoich) are crucial for understanding internal combustion engine (ICE) performance. However, current λ sensors suffer from long light-off times (on the order of seconds following a cold start) and limited time resolution. In this study, a four-color mid-infrared laser absorption spectroscopy (LAS) sensor was developed to provide 5 kHz measurements of temperature, CO, CO2, and NO in engine-out exhaust. This LAS sensor was then combined with 1 kHz hydrocarbon (HC) measurements from a flame ionization detector (FID), and the Spindt exhaust gas analysis method to provide 1 kHz measurements of λ. To the authors’ knowledge, this is the first time-resolved measurement of λ during engine cold starts using the full Spindt method. Three tests with various engine AFR calibrations were conducted and analyzed: (1) 10% lean, (2) stoichiometric, and (3) 10% rich.
Journal Article

A Virtual Calibration Strategy and Its Validation for Large-Scale Models of Multi-Sheet Self-Piercing Rivet Connections

2024-04-29
Abstract This article presents a strategy for the virtual calibration of a large-scale model representing a self-piercing rivet (SPR) connection. The connection is formed between a stack of three AA6016-T4 aluminum sheets and one SPR. The calibration process involves material characterization, a detailed riveting process simulation, virtual joint unit tests, and the final large-scale model calibration. The virtual tests were simulated by detailed solid element FE models of the joint unit. These detailed models were validated using experimental tests, namely peeling, single-lap joint, and cross-tests. The virtual parameter calibration was compared to the experimental calibration and finally applied to component test simulations. The article contains both experiments and numerical models to characterize the mechanical behavior of the SPR connection under large deformation and failure.
Journal Article

Se (IV)-Doped Monodisperse Spherical TiO2 Nanoparticles for Adhesively Bonded Joint Reinforcing: Synthesis and Characterization

2024-04-27
Abstract This study focused on the synthesis and characterization of monodisperse spherical TiO2 nanoparticles doped on the surface with Se (IV) in order to increase the mechanical properties of the bonded joint reinforcing. Work will begin with the synthesis of monodisperse quasi-spherical TiO2 nanoparticles with a modal diameter of less than 20 nm, using the sol-gel technique. Se (IV) selenium surface doping changed the specimen’s chemistry and physics. Different initial concentrations of the doping element will be tested. Next, a physicochemical characterization of the different solid systems will be carried out in order to determine the effect of the doping element on the properties of titanium dioxide. Their morphology and size will be studied through transmission electron microscope observations; volume chemical composition by X-ray diffraction analysis, EDX (energy-dispersive X-ray), and XRF (X-ray fluorescence).
Journal Article

Failure Analysis of Cryogenically Treated and Gas Nitrided Die Steel in Rotating Bending Fatigue

2024-04-24
Abstract AISI H13 hot work tool steel is commonly used for applications such as hot forging and hot extrusion in mechanical working operations that face thermal and mechanical stress fluctuations, leading to premature failures. Cryogenic treatment was applied for AISI H13 steel to improve the surface hardness and thereby fatigue resistance. This work involves failure analysis of H13 steel specimens subjected to cryogenic treatment and gas nitriding. The specimens were heated to 1020°C, oil quenched followed by double tempering at 550°C for 2 h, and subsequently, deep cryogenically treated at −185°C in the cryochamber. Gas nitriding was carried out for 24 h at 500°C for 200 μm case depth in NH3 surroundings. The specimens were subjected to rotating bending fatigue at constant amplitude loading at room temperature.
Journal Article

Post-Treatment and Hybrid Techniques for Prolonging the Service Life of Fused Deposition Modeling Printed Automotive Parts: A Wear Strength Perspective

2024-04-24
Abstract This study aims to explore the wear characteristics of fused deposition modeling (FDM) printed automotive parts and techniques to improve wear performance. The surface roughness of the parts printed from this widely used additive manufacturing technology requires more attention to reduce surface roughness further and subsequently the mechanical strength of the printed geometries. The main aspect of this study is to examine the effect of process parameters and annealing on the surface roughness and the wear rate of FDM printed acrylonitrile butadiene styrene (ABS) parts to diminish the issue mentioned above. American Society for Testing and Materials (ASTM) G99 specified test specimens were fabricated for the investigations. The parameters considered in this study were nozzle temperature, infill density, printing velocity, and top/bottom pattern.
Journal Article

A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper

2024-04-18
Abstract Automotive subframe is a critical chassis component as it connects with the suspension, drive units, and vehicle body. All the vibration from the uneven road profile and drive units are passed through the subframe to the vehicle body. OEMs usually have specific component-level drive point dynamic stiffness (DPDS) requirements for subframe suppliers to achieve their full vehicle NVH goals. Traditionally, the DPDS improvement for subframes welded with multiple stamping pieces is done by thickness and shape optimization. The thickness optimization usually ends up with a huge mass penalty since the stamping panel thickness has to be changed uniformly not locally. Structure shape and section changes normally only work for small improvements due to the layout limitations. Tuned rubber mass damper (TRMD) has been widely used in the automotive industry to improve the vehicle NVH performance thanks to the minimum mass it adds to the original structure.
Journal Article

Research on Network Security Situation Prediction Algorithm Combining Intuitionistic Fuzzy Sets and Deep Neural Networks

2024-04-17
Abstract The expansion of the internet has made everyone’s personal and professional lives more transparent. There are network security issues because people like sharing resources under the right conditions. Academics have demonstrated significant interest in situation awareness, which includes situation prediction, situation appraisal, and event detection, rather than focusing on the security of a single device in the network. Multi-stage attack forecasting and security situation awareness are two significant issues for network supervisors because the future usually is unknown. Hence, this study suggests combined intuitionistic fuzzy sets and deep neural network (CIFS-DNN) for network security situation prediction. The goal is to provide network administrators with a resource they can use as a point of reference while they formulate and carry out preventive actions in the event of a network assault.
Journal Article

Optimization and Performance Evaluation of Additives-Enhanced Fluid in Machining Using Split-Plot Design

2024-04-15
Abstract In recent years, the use of cutting fluids has become crucial in hard metal machining. Traditional non-biodegradable cutting fluids have long dominated various industries for machining. This research presents an innovative approach by suggesting a sustainable alternative: a cutting fluid made from a blend of glycerol (GOL) and distilled water (DW). We conducted a thorough investigation, creating 11 different GOL and DW mixtures in 10% weight increments. These mixtures were rigorously tested through 176 experiments with varying loads and rotational speeds. Using Design-Expert software (DES), we identified the optimal composition to be 70% GOL and 30% DW, with the lowest coefficient of friction (CFN). Building on this promising fluid, we explored further improvements by adding three nanoscale additives: Nano-graphite (GHT), zinc oxide (ZnO), and reduced graphene oxide (RGRO) at different weight percentages (0.06%, 0.08%, 0.1%, and 0.3%).
Journal Article

Bayesian Network Model and Causal Analysis of Ship Collisions in Zhejiang Coastal Waters

2024-04-10
Abstract For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions.
Journal Article

Assessing the Impact of Rubberized Asphalt on Reducing Hip Fracture Risk in Elderly Populations Using Human Body Models

2024-04-08
Abstract Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

Microstructural and Corrosion Behavior of Thin Sheet of Stainless Steel-Grade Super Duplex 2507 by Gas Tungsten Arc Welding

2024-03-21
Abstract Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Experimental Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2024-03-01
Abstract The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT.
Journal Article

Investigation on the Surface Structure and Tribological Characterization of 10 wt.% ZrO2-Reinforced Alumina Prepared by Flame Spray Coating

2024-02-20
Abstract In this study, we have investigated the microstructural characteristics, the mechanical properties, and the dry sliding wear behavior of a ceramic coating consisting of zirconia (ZrO2) and alumina (Al2O3) deposited by flame spraying. A series of wear tests were carried out under a variety of loads and at two different sliding speeds. The evaluation included an examination of the coating microstructure, microhardness, coefficient of friction (COF), and wear resistance of the flame-sprayed coating. The results showed that the coatings had a perfectly structured micro-architecture and were metallurgically bonded to the substrate. The Al2O3 coating exhibited a fine granular structure with pores and oxides. The microstructure of Al2O3-10 wt.% ZrO2, on the other hand, showed a blocky structure with a uniform distribution of ZrO2 inclusions in the composite coating.
Journal Article

TOC

2024-02-12
Abstract TOC
Journal Article

Vehicle Braking Performance Improvement via Electronic Brake Booster

2024-02-10
Abstract Throughout the automobile industry, the electronic brake boost technologies have been widely applied to support the expansion of the using range of the driver assist technologies. The electronic brake booster (EBB) supports to precisely operate the brakes as necessary via building up the brake pressure faster than the vacuum brake booster. Therefore, in this article a novel control strategy for the EBB based on fuzzy logic control (FLC) is developed and studied. The configuration of the EBB is established and the system model including the permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, reaction disk, and the hydraulic load are modeled by MATLAB/Simulink. The load-dependent friction has been compensated by using Karnopp friction model. Due to the strong nonlinearity on the EBB components and the load-dependent friction, FLC has been used for the control algorithm.
X